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I. INTRODUCTION

Chemists have long envisioned reactions as passages from an initial,
reactant state, locally stable, through an unstable transition state, to a final,
stable product state. Described in terms of a multidimensional surface of
internal energy as a function of the locations of the atomic nuclei, this model
has the reacting system go from one local minimum across a saddle in the
landscape to another local minimum. The questions, How fast does a system
actually traverse the saddles? and What kinds of trajectories carry the
system through?, have been among the most intriguing subjects in chemical
reaction theories over the past several decades [1—15]. The introduction of
the concept of ‘‘transition state’’ by Eyring and Wigner in 1930s [3—5] had
great successes in the understanding of the kinetics of chemical reactions: It
led to the definition of a hypersurface (generally in phase space) through
which a reacting system should pass only once on the way from reactants
to products. It has also provided us with a magnifying glass to understand
the kinetics by decomposing the evolution of the reactions into, first, how a
reacting system reaches into the transition state from the reactant state by
getting a certain amount of thermal or light energy, and, second, how the
system leaves the transition state after its arrival there, for example, its
passage velocity and pattern of crossings.

A widespread assumption in a common class of chemical reaction
theories [3—11] is the existence of such a hypersurface in phase space
dividing the space into reactant and product regions that a chemical species
crosses it only once on its path to reaction. However, many formulations of
chemical reaction rate theories have had to allow this probability, the
‘‘transmission coefficient �,’’ to be less than unity. Toward resolving the
recrossing problem that spoils this ‘‘no-return’’ hypothesis, researchers have
so far tried to interpret the reaction rates by using either variational
transition state theory (TST) [9—11] which optimizes a configurational
dividing surface by minimizing the recrossings, or the (generalized)
Langevin formalism developed by Kramers [14] and Grote and Hynes
[15], which regards the recrossings as arising from ‘‘(molecular) friction’’
by the ‘‘bath’’ degrees of freedom, which retards any of the reactive
trajectories. Neither of these approaches, however, could have clarified the
actual mechanics of the systems’ passage through a transition state.

Several findings, both theoretical [16—29] and experimental [30, 31],
during the last decades have shed light on the mechanics of passage through
the reaction bottlenecks, and on the concept of transition state, especially in
systems with only a few degrees of freedom (dof). The striking experimental
studies by Lovejoy et al. [30] ‘‘see’’ this transition state via the photofrag-
ment excitation spectra for unimolecular dissociation of highly vibrationally
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excited ketene. These spectra revealed that the rate of this reaction is
controlled by the flux through quantized thresholds within a certain energy
range above the barrier. The observability of the quantized thresholds in the
transition state was first discussed by Chatfield et al. [32]. Marcus [33]
pointed out that this indicates that the transverse vibrational quantum
numbers might indeed be approximate constants of motion, presumably in
the saddle region.

In the same period, Berry and his co-workers explored the nonuniformity
of dynamical properties of Hamiltonian systems of several N-atom clusters,
with N from 3 to 13; in particular, they explored how regular and chaotic
behavior may vary locally with the topography of the potential energy
surfaces (PESs) [16—23]. They revealed, by analyses of local Liapunov
functions and Kolmogorov entropies, that when systems have just enough
energy to pass through the transition state, the systems’ trajectories become
collimated and regularized through the transition state, developing approxi-
mate local invariants of motion different from those in the potential well.
This occurs even though the dynamics in the potential well is fully chaotic
under these conditions. It was also shown that at higher energies above the
threshold, emerging mode—mode mixing wipes out these approximate
invariants of motions even in the transition state.

Davis and Gray [24] first showed that in Hamiltonian systems with two
dof, the transition state defined as the separatrix in the phase space is always
free from barrier recrossings, so the transmission coefficient for such systems
is unity. They also showed the existence of the dynamical bottlenecks to
intramolecular energy transfer in the region of potential well, that is, cantori
(in a two-dof system), which form partial barriers between irregular regions
of phase space [24—26]. Zhao and Rice [26] developed a convenient
approximation for the rate expression for the intermolecular energy transfer.
However, their inference depends crucially on the Poincaré section having
only two dimensions, and no general theory exists yet for systems of higher
dimensionality [27, 34—36].

By focusing on the transition state periodic orbits in the vicinity of the
unstable saddle points, Pechukas et al. [37] first showed in the late 1970s,
for two-dimensional (2D) Hamiltonian systems such as the collinear
H�H

�
reaction, that, within a suitable energy range just above the saddle,

the reaction bottleneck over which no recrossings occur with a minimal flux
of the system, can be uniquely identified as one periodic orbit dividing
surface (PODS), a dividing surface S(q

�
� 0). (Here q

�
is the hyperbolic

normal coordinate about the saddle point.) Moreover, as the energy
increases, pairs of the PODSs appearing on each reactant and product side
migrate outward, toward reactant and product state, and the outermost
PODS become identified as the reaction bottleneck. De Leon [28] devel-
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oped a so-called reactive island theory; the reactive islands are the phase-
space areas surrounded by the periodic orbits in the transition state, and
reactions are interpreted as occurring along cylindrical invariant manifolds
through the islands. Fair et al. [29] also found in their two- and three-dof
models of the dissociation reaction of hydrazoic acid that a similar cylinder-
like structure emerges in the phase space as it leaves the transition state.
However, these are crucially based on the findings and the existence of
(pure) periodic orbits for all the dof, at least in the transition states. Hence,
some questions remain unresolved, for example, ‘‘How can one extract these
periodic orbits from many-body dof phase space?’’ and ‘‘How can the
periodic orbits persist at high energies above the saddle point, where chaos
may wipe out any of them?

Recently, we developed a new method to look more deeply into these
local regularities about the transition state of N-particle Hamiltonian
systems [38—44]. The crux of the method is the application of Lie canonical
perturbation theory (LCPT) [45—53], combined with microcanonical mol-
ecular dynamics (MD) simulation of a region around a saddle point. This
theory constructs the nonlinear transformation to a hyperbolic coordinate
system, which ‘‘rotates away’’ the recrossings and nonregular behavior,
especially of the motion along the reaction coordinate. We showed by using
intramolecular proton-transfer reaction of malonaldehyde [38, 39] and
isomerization reactions in a simple cluster of six argon atoms [40—44] that,
even to energies so high that the transition state becomes manifestly chaotic,
at least one action associated with the reaction coordinate remains an
approximate invariant of motion throughout the transition state. Moreover,
it is possible to choose a multidimensional phase-space dividing surface
through which the transmission coefficient for the classical reaction path is
unity [40]. We ‘‘visualized’’ the dividing hypersurface in the phase space by
constructing the projections onto subspaces of a very few coordinates and
momenta, revealing how the ‘‘shape’’ of the reaction bottleneck depends on
energy of the system and the passage velocity through the transition state,
and how the complexity of the recrossings emerges over the saddle in the
configurational space [41, 42]. (The dividing hypersurface migrates, depend-
ing on the passage velocity, just as PODS do.) We showed that this also
makes it possible to visualize the stable and unstable invariant manifolds
leading to and from the hyperbolic point of the transition state, like those
of the one-dimensional (1D), integrable pendulum, and how this regularity
turns to chaos with increasing total energy of the system. This, in turn,
illuminates a new type of phase-space bottleneck in a transition state that
emerges as the total energy, which keeps a reacting system increasingly
trapped in that state, irrespective of any coordinate system one might see
the dynamical events [43, 44].
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This chapter is a review of our recent theoretical developments [38—44],
in which we address two fundamental questions:

1. How can we extract a dividing hypersurface as free as possible from
recrossings between the reactant and product states? And what is the
physical foundation of why the reacting system can climb through the
saddles?

2. How do the topographical features of a potential surface transform the
dynamics of saddle crossings as the energy of the reacting system
increases from threshold to much higher values? As a corollary, what
role do saddles, including those of rank �1, play in the system’s
transition from regular to chaotic dynamics?

The outline of this chapter is as follows. In Section II, we briefly review
canonical perturbation theory and an efficient technique, so-called algebraic
quantization, for applying this method to a regional Hamiltonian about any
stationary point. In Section III, we show the approximate local invariant of
motion buried in the complexity of the original Hamiltonian H(p, q),
without invoking any explicit assumption of its integrability. We use, as an
illustrative vehicle, the isomerization of an Ar

�
cluster and show that the

invariants associated with a reaction coordinate in the phase space—whose
reactive trajectories are all ‘‘no-return’’ trajectories—densely distribute in
the sea of chaotic dof in the regions of (first-rank) saddles. We also show
how the invariants locate in the phase space and how they depend on the
total energy of the system and other physical quantities, and discuss its
implication for reaction dynamics, especially for many dof systems. In
Section IV, we examine a universal consequence that holds in the regions of
any first-rank saddle, that is, a hierarchical regularity in the transition states.
In Section V, we give some concluding remarks and future prospects. In the
appendices, we present the detailed description of Lie transform-based
canonical perturbation theory with algebraic quantization, LCPT—AQ, and
apply it there to a simple 2D system.

II. CANONICAL PERTURBATION THEORY

To begin, let us see what all the several forms of Canonical Perturbation
Theories (CPT) provide. All the CPTs [45—53], including normal form
theories [54, 55], require that an M-dimensional Hamiltonian H(p, q) in
question be expandable as a series in powers of ‘‘�,’’ where the zeroth-order
Hamiltonian H

�
is integrable as a function of the action variables J only
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Figure 2.1. Potential energy profile of an Ar
�
atom cluster: � is the unit of energy (�121K).

and does not depend on the conjugate angle variables �,

H(p, q) � �
���

��H
�
(p, q) �H

�
(J) � �

���

��H
�
(J, �) (2.1)

where p and q represent momenta and the conjugate coordinates of the
system, respectively.

Furthermore, the canonical transformation W of the coordinate system
minimizes the angular dependencies of the new Hamiltonian H� , thereby
making the new action variables J� as nearly constant as possible. If H� can
be obtained altogether independent of the angle �� (at least, at the order of
the perturbative calculation performed), then

H(p, q) �����H� (p� , q� ) �H� (J� ) � �
���

��H�
�
(J� ) (2.2)

so the new action and angle variables for mode k are expressed as

dJ�
�

dt
�J��

�
��

�H� (J� )
�	�

�

� 0 (2.3)

J�
�
� constant (2.4)
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and

	��
�
�

�H� (J� )
�J�

�

�
�
�
(J� ) � constant (2.5)

	�
�
�
�

�
(J� )t��

�
(2.6)

where �
�
is the arbitrary initial phase factor of mode k, and p� (�p� (p, q)) and

q� (�q� (p, q)) are canonically transformed new momenta and the conjugate
coordinates, respectively.

If the zeroth-order Hamiltonian H
�
(p, q) is a system of harmonic oscil-

lators,

H
�

(p, q) �
�
�
���

1

2
(p�
�
�
�

�
q�
�
) �

�
�
���



�
J
�

(2.7)

where 

�
is the fundamental frequency of mode k, these yield the equations

of motion for q�
�
and p�

�
, to obey the H� :

d�q�
�
(p, q)
dt�

�
� �
�
q�
�
(p, q) � 0 (2.8)

and

p�
�
(p, q) �



�


�
�

dq�
�
(p, q)
dt

(2.9)

where 
�
�
(�
�

�
(J� ) �
�

�
(p� , q� )) is independent of time t because J� are constant

(see its derivation in Appendix A). The general form of the solution can be
represented as

q�
�
(p, q) � �ei
� �(J� )t� �e�i
�

�
(J� )t (2.10)

p�
�
(p, q) � �


�
ei
� �(J� )t��


�
e�i
�

�
(J� )t (2.11)

Here, � and � are arbitrary constants depending on the initial value of q�
�

and p�
�
.

The action, canonical momenta in action-angle coordinate system, is of
fundamental importance for understanding of regularity in dynamics, that
is, the constancy or invariancy of the action implies how separable the mode
is. The advantage of any of the several forms of CPT is the reduction of
dimensionality needed to describe the Hamiltonian. For example, Eqs. (2.8)
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and (2.9) tell us that even though the motions look quite complicated in the
old coordinate system, they could be followed as simple decoupled periodic
orbits in the phase space. For realistic many-body nonlinear systems, Eqs.
(2.8) and (2.9) might not be retained through the dynamical evolution of the
system because the (near-)commensurable conditions may densely distribute
in typical regions throughout the phase space; that is, any integer linear
combination of frequencies that vanishes identically at some order, ��;

�
�
���

n
�


�
O(��) (2.12)

(n
�
is arbitrary integer), makes the corresponding new Hamiltonian diverge

and destroys invariants of motion. If the system satisfies any such (near-)
commensurable condition, the new Hamiltonian might have to include the
corresponding angle variables to avoid divergence [48—50, 55]. Otherwise
the CPT calculation would have to be performed to infinite order in
near-commensurable cases.

Until now, most studies based on the CPTs have focused on transforming
the new Hamiltonian itself to as simple a form as possible, to avoid
divergence, and to obtain this form through specific CPT calculations of low
finite order. In other terms, CPT imputes the responsibility of determining
the integrability of the Hamiltonian to the inclusion of some specific angle
variables and/or the convergence of the perturbation calculation. Another,
potentially powerful usage of CPT, especially for many-body chemical
reaction systems, should be its application as a detector to monitor
occurrence of local invariance, by use of the new action J�

�
(p, q) and the new

frequency 
�
�
(p, q) along classical trajectories obeying equations of motion

of the original Hamiltonian H(p, q). That is, it is quite likely that the more
dof in the system, the more the global invariants through the whole phase
space become spoiled; nevertheless the invariants of motion might survive
within a certain locality, that is, for a certain finite duration, a region of
phase space or in a certain limited subset of dof. The standard resonance
Hamiltonian [55] constructed to avoid the near-commensurability might
also prevent the possibility of detecting such a limited, approximate invari-
ant of motion retained in a certain locality. Note that the strength of local
invariants could not be detected in use of (traditional) Liapunov analysis
because local Liapunov exponents, characterized as the finite time averages
of the rate of exponential growth of an infinitesimal deviation, are affected
both by the well-known horseshoe mechanism and by the degrees of
noncompactness or local hyperbolicity of potential energy topographies, for
example, any Liapunov exponent becomes a positive definite for an integr-
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able Hamiltonian system composed of negatively curved harmonic oscil-
lators.

A. Lie Canonical Perturbation Theory

The traditional Poincaré—Von Zeipel approach [53] of CPT is based on
mixed-variable generating functions F:

q� �
�F(p� , q)

�p�
p�

�F(p� , q)
�q

(2.13)

which requires functional inversion to obtain explicit formulas for (p, q) in
terms of (p� , q� ) and vice versa, at each order of the perturbative calculation.
This imposes a major impediment to implementing higher order perturba-
tions and to treating systems with many-degrees of freedom.

With the mixed-variable generating functions, after Birkoff [54], Gustav-
son [55] developed an elegant technique to extract the new Hamiltonian to
avoid divergence by assuming that the new Hamiltonian is expandable in
normal form; if complete inversion of the variables is not required, the
procedure to calculate the new Hamiltonian can be rather straightforward.

LCPT [46, 47, 51, 52, 56] first developed by a Japanese astrophysicist,
Hori [51, 52], is superior to all the most traditional methods, in that no
cumbersome functions of mixed variables appear and all the terms in the
series are repeating Poisson brackets. The crux is the use of Lie transforms,
which is regarded as a ‘‘virtual’’ time evolution of phase-space variables
z(�(p, q)) along the ‘‘time’’ � driven by a ‘‘Hamiltonian’’ W ; that is,

dz

d�
� �z,W (z)���L

�
z (2.14)

Here, � � denotes the Poisson bracket. The formal solution can be represen-
ted as

z(�) � exp ���
�
L
�	�
� d��� z(0) (2.15)

As shown in Appendix B, it can easily be proved for any transforms
described by the functional form of Eq. (2.15), that if z(0) are canonical, z(�)
are also canonical (and vice versa), as the time evolution of any Hamiltonian
system is regarded as a canonical transformation from canonical variables
at an initial time to those at another time, maintaining the structure of
Hamilton’s equations.
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For any function f evaluated at ‘‘a point’’ z(0), the evolution operator T,
defined as below, yields a new function g represented as a function of z(0)
and �, whose functional value is equal to f (z(�)):

f (z(�)) �T f (z(0)) � exp ���
�
L W (z(0);��) d��� f (z(0)) � g(z(0); �) (2.16)

The Lie transforms of an autonomous HamiltonianH to a new Hamiltonian
H� can be brought about by

H� (z(�)) � T��H(z(�)) �H(z(0)) (2.17)

by determining W (also assumed to be expandable in powers of � as H and
H� are) so as to make the new Hamiltonian as free from the new angle
variables 	� as possible, at each order in �. Here, the inverse evolution
operator T �� brings the system dwelling at a ‘‘time’’ backward to a past in
� from that ‘‘time’’ along the dynamical evolution z, yielding H(z(0)) (see
Appendix C in detail). We shall hereafter designate the initial values of z,
z(0), by (p, q), and those at ‘‘time’’ � by (p� , q� ). Then, one can see that Eq.
(2.17) corresponds to a well-known relation between the old and new
Hamiltonians hold under any canonical transformation for autonomous
systems:

H� (p� , q� ) �H(p, q) (2.18)

The great advantage of LCPT in comparison with the Birkoff—Gustav-
son’s normal form [54, 55] is that, after W is once established through each
order, the new transformed physical quantities, for example, new action J�

�
,

frequency 
�
�
, momentum p�

�
, and coordinate q�

�
of mode k, can be expressed

straightforwardly as functions of the original momenta and coordinates
(p, q) by using the evolution operator T

J�
�
(p, q) �TJ

�
(p, q) �T �

p�
�
�
�

�
q�
�

2

�
� (2.19)


�
�
(p, q) �T

�H� (J)
�J

�

(2.20)

p�
�
(p, q) �Tp

�
(2.21)

q�
�
(p, q) �Tq

�
(2.22)

For convenience, we denote hereafter the transformed quantities f in
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terms of original (p, q) (and �) by f� (p, q), for example, J�
�
(p, q) when f � J

�
,

and we use the notation J
�
(p, q) to represent the action of H

�
;

J
�
(p, q) �

p�
�
�
�

�
q�
�

2

�

�
1

2� �E�H
�
(p, q)

p
�
dq
�

(2.23)

Note that the original coordinate system (p, q) are, in other terms, regarded
as the canonical variables to represent harmonic motions of H

�
, but

(p� (p, q), q� (p, q)) correspond to the canonical variables, which represent
periodic/hyperbolic regular motions in the phase space for the nonlinear
H(p, q) if H� (p� , q� ) actually exists.

For example, p� ���
�

(p, q) and q� ���
�

(p, q) have the following forms, respec-
tively,

p� ���
�

(p, q) �
�
�
���

���
�

c
��
p2s���1qt�� (2.24)

q� ���
�

(p, q) �
�
�
���

���
�

c�
��
p2s���qt��� (2.25)

where, for example,

p2s���1�
�
�
	��

p
���
	 �

�
�
	��

s
��	

� �2s
��

� 1�� (2.26)

and

qt���
�
�
	��

q����
	 �

�
�
	��

t
��	

� �t
��
�� (2.27)

Each coefficient depends on the original Hamiltonian and the order of CPT:
for example, c

��
and c�

��
denote the (real) coefficients of the jth term at the

nth order in p� ���
�

(p, q) and q� ���
�

(p, q), respectively; s
��

and t
��

are arbitrary
positive integer vectors where �s

��
�, �t

��
�� 0 [s

��	
and t

��	
, arbitrary positive

integers (�0)] associated with the jth term at the nth order in p� ���
�

(p, q). The
new p� ���

�
(p, q) and q� ���

�
(p, q) maintain time reversibility. We showed in the

online supplement [40] the expressions through second order for p�
�
(p, q)

and q�
�
(p, q) at saddle I, defined below, of Ar

�
. The contributions of the

original p
�
and q

�
in p� ���

�
(p, q) and q� ���

�
(p, q) are not necessarily large and

almost all modes contribute to p� ���
�

(p, q) and q� ���
�

(p, q) for i� 1.
Despite its versatility, CPT has rarely been applied to many dof realistic

molecular systems. The main reason is twofold: First is the cumbersome task
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of the analytical derivative and integral calculations that appear successively
in all kinds of CPT procedures. Second is the near-impossibility of obtaining
even moderately simple analytical expressions to describe the accurate (e.g.,
ab initio) PESs in full. Two prescriptions for these obstacles have been
developed, that is, the construction of an approximate Hamiltonian focusing
on not global, but rather regional feature of dynamics in the vicinity of an
arbitrary stationary point in question [38, 39], and a so-called ‘‘algebraic
quantization’’ [38, 48—50], which replaces the cumbersome analytical differ-
entiations and integrations carried out by computing directly with symbolic
operations based on simple Poisson bracket rules.

B. Regional Hamiltonian

We first expand the full 3N-dof potential energy surface about a chosen
stationary point, that is, minimum, saddle, or higher rank saddle. By taking
the zeroth-order Hamiltonian as a harmonic oscillator system, which might
include some negatively curved modes, that is, reactive modes, we establish
the higher order perturbation terms to consist of nonlinear couplings
expressed in arbitrary combinations of coordinates.

H�H
�
�


�
���

��H
�

(2.28)

where

H
�
�

1

2
�
�

(p�
�
�
�

�
q�
�
) (2.29)


�
���

��H
�
� � �

����	

C
��	
q
�
q
�
q
	
� �� �

����	��

C
��	�

q
�
q
�
q
	
q
�
�� (2.30)

Here, q
�
and p

�
are the jth normal coordinate and its conjugate momentum,

respectively; 

�
and C

��	
, C

��	�
, . . . are, respectively, the frequency of the jth

mode, the coupling coefficient among q
�
, q

�
, and q

	
and that among q

�
, q

�
,

q
	
, and q

�
, and so forth. The frequency associated with an unstable reactive

mode F and those of the other stable modes B are pure-imaginary and real,
respectively. At any stationary point there are six zero-frequency modes
corresponding to the total translational and infinitesimal rotational
motions, and the normal coordinates of the infinitesimal rotational motions
appear in the perturbation terms H

�
(q) (n� 0). The contribution of the total

translational motion is simply separated.
We make no more mention of this. If one deals with a system whose total

angular momentum is zero, one could eliminate the contributions of the
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total rotational motions from H
�
(q) (n� 0) by operating with a suitable

projection operator [57]; at the stationary point it corresponds to putting
to zero each normal coordinate and corresponding conjugate momentum
representing the infinitesimal total rotational motion [58]. If the total
angular momentum is not zero, the coupling elements among the rotational
and vibrational modes must be taken into account. For the sake of
simplicity, we focus on a (3N-6)-dof Hamiltonian system with total linear
and angular momenta of zero, so that the kinetic and potential energies are
purely vibrational [59]. For such a zeroth-order Hamiltonian 


�
� 0 for all

k(�1, 2, . . . , 3N� 6), the associated action-angle variables of the stable
modes B (



�R :real) and the unstable mode F (


�
� F :imaginary) are

expressed as

J

�

1

2� � p dq�
1

2 �
p�






�


q�
� (2.31)

	

� tan�� �




q


p

� (2.32)

and

J
�
�

1

2�
Im �

�������

p
�
dq
�

(2.33)

�
i

2 �
p�
�

�

�
�
� �


�
�q�
�� (2.34)

	
�
��i tanh�� �

�

�
�q
�

p
�
� 


�
���


�
�i (2.35)

Here, the action associated with the reactive mode F has first been
postulated in semiclassical transition state theory by Miller [12, 13, 60], and
it is easily verified

�	
�
, J

�
�� �

��
�	

�
, 	

�
�� �J

�
, J

�
�� 0 (2.36)

that any set of variables J and � is canonical, including those associated
with the unbound mode F.

C. Algebraic Quantization

The CPT calculation requires decomposing the functions appearing at each
order in �, called �(p, q) for brevity, usually represented by a sum of an
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arbitrary combination of arbitrary power series in p and q,

�(p, q) ��
�

c
�
ps�qt� (2.37)

into

����
1

2� � �(p, q) d� and ���� ����� (2.38)

where

ps��
�
�
	��

p
��
	 �

�
�
	��

s
�	
� �s

�
�� (2.39)

qt��
�
�
	��

q���	 �
�
�
	��

t
�	
� �t

�
�� (2.40)

Here c
�
, the coefficient of the jth term of �, is not only real but also

imaginary for the CPT calculations, if they include imaginary frequency
mode(s); s

�
and t

�
are arbitrary positive integer vectors where �s

�
�, �t

�
�� 0

(their components s
�	
and t

�	
, arbitrary positive integers (�0)) associated

with p and q (p
	
and q

	
) of the jth term.

For a wide class of Hamiltonians described in Section II.B, a quite
efficient technique, called algebraic quantization (AQ), was developed [38,
48—50]. This method first formally transforms �(p, q) to �(a*, a) in terms of
(a*, a), which may correspond to customary creation and annihilation
operators in quantum field theory, that is,

�(p, q)� �(a*, a) ��



d


a*v
au
 (2.41)

where

a*v
�
�
�
	��

(a*
	
)�
�� �

�
�
	��

v

	
� �v



�� (2.42)

au
�
�
�
	��

a���	 �
�
�
	��

u

	
� �u



�� (2.43)

and

a*
�
�

1

�2
(p
�
� i


�
q
�
) a

�
�

1

�2
(p
�
� i


�
q
�
) (2.44)
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Here, d


, and v



and u



, where �v



�, �u



�� 0 (their components v


	
and u


	
)

depend on c
�
, and s

�
and t

�
(s
�	
and t

�	
) in Eq. (2.37). By solving the following

equation of motion,

da*
�

d�
� �a*

�
,H

�
�

da
�

d�
� �a

�
,H

�
� (2.45)

a*
�
and a

�
can be expressed in terms of action J

�
, frequency 


�
, and time �

obeying Hamiltonian H
�
:

a*
�
(�) ��


�
J
�
e��

�
� �


�
J
�
e�	�

�
��	

�
� (2.46)

a
�
(�) � �


�
J
�
e���

�
��


�
J
�
e��	�

�
��	

�
� (2.47)

Then, one can rewrite Eq. (2.41) thanks to these equations as

�(�) ��



constant
 d


exp[i(v



� u



) ·��] (2.48)

which enables us to identify ��� and ��� by simply checking the strength of
the quantity associated with sth term,

�(v


� u



) ·��� ��

	��

(v

	
� u


	
)


	� (2.49)

that is, all the terms in the summation of Eq. (2.48), which are regarded as
free from and depending on time �, are those of ��� and ���. Furthermore,
the cumbersome analytical calculations of the convolutions by Poisson
bracket are also replaced by symbolic operations with no special mathemat-
ical manipulators, thanks to the simple Poisson bracket rules,

�a*
�
, a*

�
�� �a

�
, a

�
�� 0 �a*

�
, a
�
�� i


�
�
��

(2.50)

where � is Kronecker delta. (See an illustrative example in Appendix D.)

III. REGULARITY IN CHAOTIC TRANSITIONS

We have applied this method to saddle crossing dynamics in intramolecular
proton-transfer reaction of malonaldehyde [38, 39] and isomerization reac-
tion of Ar

�
[40—44]. The former is a reacting system, involving a typical

chemical bond breaking-and-forming; the latter is the smallest inert gas
cluster in which no saddle dynamics more regular than the dynamics within

  : -    93



the local wells was revealed by the local K entropy analysis by Hinde and
Berry [21].

In this chapter, we will show our recent analyses of Ar
�
isomerization, as

an illustrative vehicle, with no peculiar or specific mode(s), that offers well
representable, generalizable situations. The potential energy of Ar

�
is

represented by the sum of pairwise Lennard—Jones potentials,

V (r) � 4� �
���
��

�
r
��
�
��

��
�
r
��
�
�

� (2.51)

Here, we assigned laboratory scales of energy and length appropriate for
argon, that is, � � 121 K and �� 3.4 Å with the atomic mass m� 39.948
amu, and the total linear and angular momenta are set to zero [40]. This
cluster has two kinds of potential energy minima (see Figure 2.1). The global
minimum corresponds to an octahedral arrangement of the atoms (OCT),
with energy E��12.712�, and the other, higher minimum, to a trigonal
bipyramid structure of five atoms, capped on one face by the sixth atom
(CTBP), with energy E� �12.303�. There are two distinct kinds of first-
rank saddles. One, saddle I, at energy E��12.079� joins the OCT and
the CTBP minima. The other higher saddle, saddle II, at energy
E� �11.630�, joins two permutationally distinct CTBP structures. Saddle
II is slightly flatter than the lower saddle (Table II.1). We analyzed the
invariants of motion during the course of isomerization reaction at total
energies E� 0.1, 0.5, and 1.0� above each saddle point energy at each
saddle, for example, 16(45), 79(223), and 158(446)%of the barrier height of
OCT�CTBP (OCT�CTBP). The computational recipe for constructing
the 3N-6(�12)-dof regional Hamiltonian was described elsewhere [40]. The
three- and four-body coupling terms for both the saddles were determined
by introducing an appropriate cut-off value; the total numbers of terms were
106 three-, and 365 four-body couplings for saddle I, and 189 and 674 for
saddle II.

Here, we analyzed the Lie-transformed physical quantities, for example,
J�
�
(p, q), 
�

�
(p, q), p�

�
(p, q), q�

�
(p, q), up to second order, through which no

(exact) commensurable conditions were encountered.
Throughout this chapter the parabolic barrier, the reaction coordinate in

the original (p, q) space [and in the new (p� , q� ) space] is denoted as q
�
(q�

�
)

and the other nonreactive coordinates, as q
�
, q

�
, . . . , q

��
(q�

�
, q�

�
, . . . , q�

��
) in

order of increasing frequency, 

�



�
, . . . ,


��
(
�

�

�

�
, . . . ,


�
��

). The units of energy, distance, momentum, action, frequency, tem-
perature, mass and time are, respectively, � , m����, m����ps��, kps, ps��, K,
argon atomic mass and ps, unless otherwise noted.
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TABLE II.1
The Fundamental Frequencies 


�
for Saddles I and II (cm��)�

Mode Saddle I Saddle II

1 �49.29i(�1.477i) �35.04i(�1.050i)
2 96.06 (2.880) 89.01 (2.668)
3 113.04 (3.389) 98.54 (2.954)
4 122.91 (3.684) 124.37 (3.729)
5 149.40 (4.478) 138.24 (4.144)
6 149.71 (4.488) 153.00 (4.587)
7 173.06 (5.188) 171.13 (5.130)
8 197.81 (5.930) 178.34 (5.346)
9 200.03 (5.996) 198.44 (5.949)
10 206.19 (6.181) 206.63 (6.195)
11 235.10 (7.047) 229.78 (6.889)
12 238.47 (7.148) 241.04 (7.226)

�The values in the parentheses are in the unit of reciprocal
picoseconds (ps��).

For analyses of the infrequent saddle crossings, we employed a modified
Keck—Anderson method [40] to generate the microcanonical ensemble of
well-saddle-well trajectories. We generated 10,000 well-saddle-well trajecto-
ries for both the saddles, which were found to be enough to yield statistical
convergence in calculating the transmission coefficients in terms of many-
body phase-space dividing hypersurfaces S(q� ���

�
(p, q) � 0) (i� 0, 1, 2) at

E� 0.1, 0.5, 1.0� above both the saddles. For the trajectory calculations, we
used a fourth-order Runge—Kutta method with adaptive step-size control
[61], and the total energies in their MD calculations were conserved within
�1
 10��� .

A. Invariancy of Actions in Transition States

To begin, we look into the new action variables J�
�
(p, q) along the saddle

crossing trajectories over saddle I, linking the global minimum OCT and
the higher minimum CTBP, obeying equations of motion of the original
Hamiltonian H(p, q). The trajectory of an isolated bound oscillator retraces
the same points during each oscillation and the associated action is a
constant of the motion. The extent to which the new kth action J�

�
(p, q)

mimics this behavior indicates how separable the new kth mode, described
by p�

�
and q�

�
, is. Figure 2.2 shows a representative trajectory projected onto

the (q
�
, q

��
) plane for each total energy, 0.05, and 0.5� . Here the trajectory

at 0.05� is shown specifically because intuition tells us it should be less
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Figure 2.2. A representative saddle-recrossing trajectory at E� 0.05, and 0.5� over the
dividing surface S(q

�
� 0), projected onto the (q

�
, q

��
) plane and the PES contour plot in this

plane. The window in this figure is scaled to �0.01 q
�
 0.01 and �0.3 q

��
 0.2. The

trajectories from the left to the right side correspond to crossing from the OCT to the CTBP
minimum. While the sampled trajectory at 0.05� (bold solid line) is nonreactive, that is, coming
from the CTBP and returning to the same CTBP, that at E� 0.5� (dashed line) is reactive.
The PES contour is plotted with an energy step 0.03� , whose solid and dashed lines represent
positive and negative values, respectively.

Figure 2.3. The time dependencies of J�
�
(p, q) for the saddle-crossing trajectory at 0.05� in

Figure 2.2: (a) zeroth-, (b) first-, and (c) second-order actions. The units of action for mode 1
must be multiplied by a factor of an imaginary number i throughout the following figures. In
1.5� t� 7.5 ps, the system trajectories remain in a region ��0.01� q

�
� 0.2 [m����]. The

solid, dashed, diamond, circle, square, doted, long-dashed, triangle, x, �, dot—dashed, and
bold-solid lines throughout this chapter will denote modes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and
12, respectively.

chaotic than those at 0.1� 1.0� , because at such an energy, in the vicinity
of the saddle point, the system has insufficient kinetic energy to reach
regions where nonlinearity and mode—mode mixing are significant.

Figure 2.3 shows the zeroth-, first-, and second-order new actions along
the trajectory at 0.05� . At even E� 0.05� , only slightly above the saddle
point energy, almost of all the zeroth-order actions J� ���(p, q) do not
maintain constancy of motion at all. This result implies that the system’s
trajectory reflects even very small nonlinearities on the PES and deviates
from a simple normal mode picture. As we extend the order of LCPT, some
but not all LCPT actions J�

�
tend to be conserved in the saddle region.

96    .  



0 1 2 3 4 5 6 7 8 9 10

time [ps]

−0.15

0.00

0.15

0.30

0.45

0.60

2n
d 

or
de

r 
ac

tio
ns

 [K
ps

]

(c)

4
3 7

8 11 2

5

129

10

1

6

0 1 2 3 4 5 6 7 8 9 10

time [ps]

−0.15

0.00

0.15

0.30

0.45

0.60

0t
h 

or
de

r 
ac

tio
ns

 [K
ps

]

(a)

4

3 7

9 11 12 8

1

2

65 10

0 1 2 3 4 5 6 7 8 9 10

time [ps]

 −0.15

0.00

0.15

0.30

0.45

0.60

1s
t o

rd
er

 a
ct

io
ns

 [K
ps

]

4

3

72

12

89

11

(b)

1 6

510

97



0 2 4 6 8 10

time t [ps]

−0.15

0.00

0.15

0.30

0.45

0.60
J
k
i
t
h
(
p
,q
)
 
 
[
K
p
s
]

mode 8

mode 3

mode 4

mode 1

0th, 1st, 2nd

Figure 2.4. J� ���
�

(p(t), q(t)) (i � 0, 1, and 2) at E� 0.05� in Figure 2.3: thin, dot, and bold
lines, respectively, denote the zeroth-, first-, and second-order LCPT action.

Figure 2.4 shows each order J� ���
�

(p, q) for k� 1, 3, 4, and 8 on the same figure
axes. Even at such an energy, only slightly above the saddle point energy;
just 8% of the activation energy 0.633� from the OCT minimum, almost
none of the zeroth-order actions J� ���(p, q) maintain any constancy of motion
at all; that is, even there, most modes violate a simple normal mode picture.
The higher the order to which the LCPT is carried, the more some of the
actions J�

�
tend to be well conserved, and to persist as nearly conserved

quantities for longer times. The initial drop and/or rise observed in J�
�
(p, q)

at short times (e.g., 0—0.5 ps in Fig. 2.4) to the flat region implies that
initially, the system is just entering a ‘‘regular region’’ near the saddle point,
outside of which the system is subject to considerable nonlinearities of the
PES. That is, in the saddle region, some modes are well decoupled and
follow periodic orbits in phase space; examples are those of Eqs. (2.8) and
(2.9), while the others are coupled at least within coupled mode-subsets in
the (p� ��	, q� ��	) coordinate system.

How does the crossing dynamics change as the energy of the system
increases? Intuition suggests that at higher total energies, the nonlinearities
of the PES cannot be considered as a ‘‘sufficiently weak perturbation’’, and
the number of approximate local invariants of motion becomes smaller and
smaller, going to zero at sufficiently high energy, that is, causing the
transition from quasiregular to chaotic dynamics. This is actually a univer-
sal picture assumed in almost of all chemical reaction theories, in the vicinity

98    .  



0 2 4 6 8

time t [ps]

−0.15

−0.05

0.05

0.15

2nd order

1st order

0th order

J 1
(p

(t
),

q
(t

))
 b

ur
ie

d 
in

 a
 s

ea
 o

f c
ha

os
 [K

ps
]

Figure 2.5. An example of J� ���
�
(p(t), q(t)) (i � 0, 1, 2) along a representative trajectory

recrossed over S(q
�
� 0) at saddle I (E� 0.5� ): all the lines denote all the actions except bold

ones J� ���
�
.

of potential energy minima, which validates the assumption of local vibra-
tional equilibrium in the reactant well. In Figure 2.5, we show that at
E� 0.5� , 79% above of the activation energy from the OCT minimum,
while none of the action variables for the nonreactive modes, q�

�(2 k 3N� 6), are conserved even through O(��), the reactive mode q�
�

stands out among all the rest: Its action is more conserved as the order of
LCPT increases. (We rigorously demonstrated [43, 44] that these findings,
that the phase-space reaction coordinate q�

�
(p, q) persists its action even in

the sea of chaos, is quite generic, irrespective of these sampled trajectories.)
However, how do these trajectories, observed as recrossing over the

configurational dividing surface S(q
�
� 0), look in the new (p� , q� ) space?

B. ‘‘See’’ Trajectories Recrossing the Configurational
Dividing Surface in Phase Space

Let us see these two trajectories, recrossing the conventional, configur-
ational dividing surface S(q

�
� 0), by projecting these onto the zeroth-, first-,

and second-order new coordinate planes of q�
�
(p, q) and q�

�
(p, q). Remember

that the zeroth-order coordinate system (q� ���
�

, q� ���
�

) is the original normal
coordinate system (q

�
, q
�
). Figure 2.6 shows the projections onto a 2D

subspace chosen from the nonreactive coordinates, (q� ���
�

(p, q), q� ���
�

(p, q)), at
both the energies.
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Figure 2.6. The viewpoint from (q� ���
�

(p, q), q� ���
�

(p, q)) (saddle I). (a) E� 0.05� , (b) E� 0.5� .

At the lower energy, 0.05� [see Fig. 2.6(a)], in all the orders one can see
the approximate Lissajous figures, which implies that in the subspace of
these two nonreactive dof, the motions are composed of two approximately
decoupled, simple harmonic oscillations. As the total energy increases to 10
times higher, �0.5� , as one may anticipate from Figure 2.5, that no
approximate invariants of motion survive in the nonreactive subspace, and
the nonreactive modes change from regular to fully chaotic dynamics [see
Fig. 2.6(b)].

An even more striking consequence of the LCPT transformation appears
in the behavior of the reactive degrees of freedom. Figure 2.7 shows the
projections of the recrossing trajectories onto the (q� ���

�
(p, q), q� ���

�
(p, q)). The

abscissas in the figure correspond to a reaction coordinate, that is, 
�
�
� F,

and the ordinates, to the nonreactive coordinates, that is, 
�
�
� R, in each

order’s coordinate system. To do this, we first examine the nonreactive
recrossing trajectory at 0.05� in Figure 2.2, which has returned to the
original state after recrossing over the naive dividing surface S(q

�
� 0). As

shown in Figure 2.7, this trajectory never cross any dividing surface
S(q� �
�

�
(p, q) � 0) and S(q� ��	

�
(p, q) � 0) from the CTBP minimum where the

trajectory originates. The trajectory is simply not that of a reaction. We can
deduce one important feature from this: If the local invariants of motion
persist along the higher order reactive coordinate, for example, q� ��	

�
(p, q), all

nonreactive recrossing trajectories observed over any configurational divid-
ing surface, for example, S(q

�
� 0), is transformed to trajectories that do not

cross the dividing hypersurface S(q� ��	
�

(p, q) � 0) in the phase space. The
reason is that decoupling the motion along the reactive LCPT coordinate
removes all forces that would return the system back across the dividing
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Figure 2.7. The projections onto (q� ���
�

(p, q), q� ���
�

(p, q)) at E� 0.05� over saddle I.

hypersurface. Such nonreactive trajectories are those with insufficient inci-
dent momentum in the reactive coordinate p�

�
(p(0), q(0)) to climb over the

saddle. In other words, all the trajectories should react, whose incident
momentum p�

�
(p(0), q(0)) is larger than a certain threshold to carry the

system through it.
Next, turn to the behavior of the reactive recrossing trajectory at 0.5� , at

which the transition state is almost chaotic (see Fig. 2.5). Here, as seen in
Figure 2.8, the recrossings that occur over the naive dividing surface
S(q

�
� 0) in zeroth order are eliminated; they occur as no-return crossing

motions over the second-order dividing surface S(q� ��	
�

(p, q)�0). Further-
more, the system’s trajectories along the second-order reactive coordinate
q� ��	
�

(p, q) are not forced to return to the dividing surface S(q� ��	
�

(p, q) � 0)
over the (saddle) region, �0.04� q� ��	

�
(p, q)� 0.04. On the other hand, the

zeroth- and first-order reactive coordinates are not decoupled from the
other modes in the regions either near or more distant from the dividing
surface. For example, the cyclic motion around 0.025� q� �
�

�
(p, q)� 0.030

implies the existence of some couplings between q� �
�
�

(p, q) and q� �
�
�

(p, q). Up
to such moderately high energies, ‘‘apparent’’ recrossing reactive trajectories,
observed in a low-order phase-space coordinate system (p� , q� ) or the con-
figurational space, can be rotated away to the ballistic, single crossing
motions in the higher orders.
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Figure 2.8. The projections onto (q� ���
�

(p, q), q� ���
�

(p, q)) at E� 0.5� over saddle I.

C. ‘‘Unify’’ Transition State Theory and Kramers‒Grote‒Hynes Theory

In all the cases that saddle crossings have approximate local invariants of
motion associated with the ‘‘reactive mode F’’ in a short time interval but
long enough to determine the final state of the crossings, S(q�

�
(p, q) � 0) can

be identified as a ‘‘no-return’’ dividing hypersurface, free from the long-
standing ambiguity in reaction rate theories, the recrossing problem. Recall
that it is because there is no means or force returning the system to
S(q�

�
(p, q) � 0) even though the system may recross any of the configur-

ational surfaces. The reformulated microcanonical (classical) transition state
theory (TST) rate constant k� ���(E) is obtained [38] as an average of the
one-way fluxes j

�
(�q��

�
(p, q)h(q��

�
(p, q))) across S(q�

�
(p, q) � 0) over micro-

canonical ensembles constructed over a range of energies E.

k� ���(E) �� j
�
�
�
��q� �

�
(p, q)�[q�

�
(p, q)]h[q��

�
(p, q)]�

�

��
�

dq
�
dp

�
��

�

dq
�
dp

�


�[E�H(p, q)]q��
�

(p, q)�[q�
�

(p, q)]h[q��
�

(p, q)] (2.52)

where h(x) and �(x), respectively, denote the Heaviside function and Dirac’s
delta function of x.
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The deviation of k� ���(E) from the experimental rate coefficient k���(E) is
defined as a new transmission coefficient �

�
:

�
�
�

k���(E)

k� ���(E)
(2.53)

If the vibrational energy relaxation is fast enough to let us assume quasi-
equilibration in the well, and the tunneling effect is negligible, one may use
�
�
to estimate the extent of the true recrossing effect independent of the

viewpoint or coordinate along which one observe its reaction events. This
would be a means to measure the extent to which the action associated with
the reactive mode cease to be approximate invariants; their nonconstancy
reflects the degree of closeness to fully developed chaos in which no invariant
of motion exists.

In order to focus on how the recrossings over a given dividing surface
contribute to �

�
, we estimated the quantities ����

�
(t)

����
�
(t) ��

�
(t; S(q� ���

�
(p, q) � 0)) �

� j (t� 0)h[q� ���
�

(p, q)]�
�

� j
�
(t� 0)�

�

(2.54)

using the 10,000 well-saddle-well classical trajectories across both the
saddles at these three distinct energies above the threshold of Ar

�
. Here

j(t � 0) and j
�
(t � 0), respectively, denote the initial total, and initial

positive fluxes crossing the ith-order phase-space dividing surface
S(q� ���

�
(p, q) � 0), and the origin of time t was set when the system trajectory

first crosses the given dividing surface.
The ����

�
(t) in the regions of saddle I and saddle II are shown at E� 0.1,

0.5, and 1.0� in Figure 2.9. The zeroth-order transmission coefficient ����
�

(t),
using the conventional configurational dividing surface S(q

�
� 0), deviates

significantly from unity (except at a very short times) and these deviations
increase with increasing total energy. The plateau in ����

�
(t) apparent in the

figures implies that the recrossing trajectories eventually go into their final
state and never again cross the given dividing surface within some interval
long compared with the transit time. The plateau value of the ����

�
(t) may

be identified as the conventional transmission coefficient �. All these �’s
smaller for saddle I than for saddle II show that the traditional reaction
coordinate q

�
is more coupled to the other nonreactive dof in the region of

saddle I than it is near saddle II [20—22]. We showed, however, that in
terms of the phase-space dividing hypersurface S(q� ���

�
(p, q) � 0), for low and

moderately high energies, �0.1—0.5� , for both the saddles, the higher is the
order of the perturbative calculation, the closer the ����

�
is to unity. Even at
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Figure 2.9. The new transmission coefficient ����
�
(t) (i � 0, 1, 2) (E� 0.1, 0.5, and 1.0�); (a)

saddle I; (b) saddle II. The solid, dot, and bold lines denote the zeroth-, first-, and second-order
����
�
(t), respectively. The converged values at saddle I are 0.9988(0), 0.99996(1), 1.00000(2)

(E� 0.1�); 0.9940(0), 0.9987(1), 0.9999(2) (E� 0.5�); 0.9912(0), 0.9949(1), 0.9982(2) (E� 1.0�),
and those at saddle II 0.9991(0), 0.99995(1), 1.000000(2) (E � 0.1�); 0.9958(0), 0.9986(1),
0.9996(2) (E � 0.5�); 0.9931(0), 0.9948(1), 0.9955(2) (E � 1.0� ). The number in parentheses
denotes the order of LCPT.

energies �0.5� , the plateau values of ���	
�

(t) are almost unity, for example,
0.9999 (for saddle I) and 0.9996 (for saddle II). As the total energy becomes
much higher, �1.0� , even ���	

�
becomes deviate significantly from unity as

the conventional ����
�

does. This ‘‘deviation from unity at the order O(��)’’
represents the degrees of

1. The difficulty of exposing the approximate invariants of motion
associated with q�

�
with only a finite orders, �O(��), to decouple the

reactive q�
�
from the others.

2. Encroaching into a sufficiently high-energy region where the length of
the path where the reactive mode is separable diminishes (i.e., even
though it would be possible to carry CPT through an infinite order, it
is anticipated, especially for nonlinear many-body systems, that there
exist a certain energy region so high that the convergence radius of
CPT becomes negligibly small).

The fact that the deviation is smaller for saddle I than that for saddle II
implies that the crossing dynamics over saddle I should exhibit better
approximate invariants of motion with q�

�
than that over saddle II at O(��).

Note that less chaotic saddle-crossing dynamics need not imply a better
approximate invariant of motion associated with q�

�
at any specific order of

the perturbative calculation. Furthermore, the strength of chaos in the
regions of saddles, as characterized by the local Kolmogorov entropy, the
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sum of all the positive local Liapunov exponents �
�	, is only weakly affected
by a single (small) positive exponent �
�	

�
associated with the somewhat-

regularized q�
�
(p, q) motion. This ‘‘burial’’ of a few locally regular modes in a

sea of chaotic modes is apparent in the results of Hinde and Berry [21].
All these results indicate that, even in the region where the system is

almost chaotic, an approximate analytical expression for (first-rank) saddle-
crossing dynamics may nonetheless exist along a negatively curved mode in
the phase space coordinate system (p� , q� );

q�
�
(p(t), q(t)) � �e�
� ��t��e��
�

�
�t (2.55)

��
1

2 �q� �(t�) �
p�
�
(t
�
)

�

�
� � (2.56)

��
1

2 �q� �(t�) �
p�
�
(t
�
)

�

�
� � (2.57)

Here, t
�
is arbitrary time in t in the vicinity of saddles. These expressions

imply that, even though almost all degrees of freedom of the system are
chaotic, the final state (and initial state) may have been determined a priori.
For example, if the trajectories that have initiated from S(q

�
� 0) at time t

�
have �� 0, the final state has already been determined at ‘‘the time t

�
when

the system has just left the S(q
�
� 0)’’ to be a stable state directed by q�

�
� 0.

Similarly, from only the phase-space information at t� t
�

(the sign of �),
one can grasp whether the system on S(q

�
� 0) at time t

�
has climbed from

either stable state, that is, reactant or product, without calculating any
time-reversed trajectory [62].

To address the recrossing problem, which spoils the ‘‘no-return’’ hypoth-
esis, one has tried to interpret the reaction rates either by variational TST
[9—11] or by (generalized) Langevin formalism by Kramers [14] and Grote
and Hynes [15]. van der Zwan and Hynes [63] proved that, for a class of
Hamiltonians representing (first-rank) saddles by parabolic barrier—har-
monic oscillator systems linearly coupled with one another (i.e., an integr-
able system!), the TST rate constant is equivalent to that of the Grote—
Hynes formulation with the parabolic mode as the reactive dof, if the
reaction coordinate is chosen as an unstable normal coordinate composed
of the total system (�reacting system�bath), under the condition that the
vibrational relaxation is fast enough to attain ‘‘quasiequilibration’’ in the
reactant well.

Our findings suggest that their equivalence is much more generic and
applicable to a wider range of Hamiltonian classes, even when the system is
almost chaotic. This stimulates us to reconsider a fundamental question of
what constitutes the ‘‘thermal bath’’ for reacting systems. One may antici-
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pate that reactions take place along a ballistic path composed of the total
system in the sea of chaos, at least, in the region of saddles. The ‘‘thermal
bath’’ for reactions, simply defined thus far as all the rest of the atoms or
molecules except the reacting system, does not necessarily retard the reactive
trajectories; rather, such a bath may control and assist the reactants to climb
and go through the saddles.

Most reactions take place not on smooth but rugged PESs, for which the
(generalized) Langevin formalism was originally developed. Nevertheless, a
picture similar to that of a simple reacting system may emerge even on a
rugged PES. In cases in which a ‘‘coarse-grained’’ landscape connecting one
basin with another can be well approximated as parabolic at the zeroth
order, we may elucidate how the coarse-grained action persists along the
(coarse-grained) reactive degree of freedom during the dynamical evolution
obeying the original Hamiltonian H(p, q). A technique or a scheme [64] to
extract such a coarse-grained regularity or cooperativity from ‘‘random
thermal’’ motions is quite demanding, especially to establish the equivalence
or differences of descriptions by different representations or coordinate
systems.

D. ‘‘Visualize’’ a Reaction Bottleneck in Many-Body Phase Space

The dividing surface in this representation is analogous to the conventional
dividing surface in the sense that it is the point set for which the reaction
coordinate has the constant value it has at the saddle-point singularity.
However the nonlinear, full-phase-space character of the transformation
makes the new crossing surface a complicated, abstract object. We proposed
[41, 42] a visualization scheme of S(q�

�
(p, q) � 0) by projections into spaces

of a few dimensions, for example, the (q
�
, q
�
) plane:

S� (q
�
, q
�
; E) ���[q�

�
(p�, q�)]�(q�

�
� q

�
)�(q �

�
� q

�
)�
�

��
�

dq�
�
dp�

�
��

�

dq�
�
dp�
�


�[E�H(p�, q�)]�[q�
�
(p�, q�)]�(q�

�
� q

�
)�(q �

�
� q

�
) (2.58)

For example, the projection onto the configurational reaction coordinate
q
�
is an important device to reveal how S(q�

�
(p, q) � 0) differs from the

conventional dividing surface S(q
�
� 0). Remember that in an energy range

close to the threshold energy in which the normal mode picture is approxi-
mately valid, the phase-space S(q�

�
� 0) collapses onto the traditional

configuration-space surface where q
�
� 0. Similarly, the projection onto p

�
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TABLE II.2
Pattern Classification (N

��
, N

��
, �) of Nonreactive, Recrossing Trajectories
Over the

Configurational Dividing Surface S(q
�
� 0) at Saddle I

E� 0.1� (��11.979� ) 0.5� (��11.579� ) 1.0� (��11.079� )

(1, 1, �) 161 329 369
(2, 2, �) 7 23 22
(3, 3, �) 0 1 3
(4, 4, �) 0 0 0

(1, 1, �) 26 67 86
(2, 2, �) 1 6 12
(3, 3, �) 0 0 0
(4, 4, �) 0 1 0

is an important device to reveal how the passage velocity through the
saddles affects the S(q�

�
(p, q) � 0).

One should be careful about the implication of S(q
�
� 0) in the phase

space. Accessible values of p and q are restricted by total energy E. Thus, in
stating that S(q�

�
(p, q) � 0) partially collapses onto S(q

�
� 0), the relevant

regions of S(q
�
� 0) are not all of this surface determined by only q

�
irrespective of the other variables, but only parts of a hypersurface where
q
�
� 0, generally determined by p and q.
Next, we ask, What could one learn from these projections of the com-

plicated, energy and momenta-dependent abstract object, S(q�
�
(p, q) � 0)?

First, we look into the complicated nonreactive, recrossing behavior of
trajectories over the conventional dividing surface S(q

�
� 0) at saddle I.

Table II.2 shows the numbers of nonreactive crossings in 10,000 well-saddle-
well trajectories over S(q

�
� 0) as the energy increases from E� 0.1 to 1.0� .

Here, (N
��

, N
��

, �) represents the number of times each crosses the
dividing surface in a specific direction: if a crossing trajectory, whose sign of
the flux at the first crossing is �, crosses a given dividing surface N

��
times

from positive to negative, and N
��

times from negative to positive along
the reactive coordinate, the trajectory is classified into the (N

��
, N

��
, �)-

type crossing, for example, for saddle I a trajectory that crosses the dividing
surface two times and the first crossing is from the OCT to the CTBP
minimum is (1, 1, �).

The table tells us the trajectories climbing from the CTBP minimum are
more likely to return after crossing S(q

�
� 0), than the trajectories from the

OCT global minimum, for example, 329(1, 1,�) � 67(1, 1,�) at 0.5� (the
corresponding figures are essentially the same for the symmetrical saddle II
within the statistical error [41]).
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Figure 2.11. S� ��	(q
�
, q

�
; E) at saddle II, (a) E�0.1� ; (b) E� 0.5� .

Figure 2.10. S� ��	(q
�
, q

�
; E) at saddle I, (a) E� 0.1� ; (b) E� 0.5� .

So far, there has been no means to address why, as the system passes
through the transition state, there is such a distinct dependence of probabil-
ity on the direction of climbing. The visualization scheme of the phase-space
dividing surface lets us probe deeper into such questions. Figures 2.10 and
2.11 show projections of the ith order dividing surface S(q� ���

�
(p, q) � 0) onto

the two-dimensional (q
�
, q

�
) subspace at E� 0.1 and 0.5� for saddle I and

saddle II, respectively. As the total energy increases, the projections of the
phase-space dividing surfaces, S(q� ���

�
(p, q) � 0) (i� 1, 2), broaden and extend

to regions more removed from the conventional dividing surface S(q
�
� 0).

Note for saddle I that these S(q�
�
(p, q) � 0) are more heavily distributed on

the minus side (to the OCT minimum) than on the plus side (to the CTBP
minimum) in the q

�
axis. This asymmetrical feature of the S(q�

�
(p, q) � 0)

explains the higher frequencies found for (n, n,�) than for (n, n,� ) type
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(1,1,+)

(1,1,−)

(2,2,−)

(2,2,+)

configurational dividing surface S(q1 = 0)

q1
+−

phase-space dividing surface S(q1(p,q) = 0)

OCT CTBP

Figure 2.12. The schematic pictures of the (1, 1,�), (1, 1,�), (2, 2, �), and (2, 2,�)
crossing patterns.

crossings over S(q
�
� 0) of saddle I (see also Fig. 2.12):

���: If the system once crossed the naive dividing surface S(q
�
� 0)

from minus to plus, the system rarely returns to S(q
�
� 0) because of

the small driving force to make the system go back to S(q
�
� 0) after

it has passed the greater part of the distribution constituting the real
S(q�

�
� 0).

���: Even if the system crossed S(q
�
� 0) from plus to minus, the

system has not necessarily passed the surface S(q�
�
� 0). The system

will recross S(q
�
� 0) if the system does not possess sufficient incident

(reactive) momentum p�
�
to pass through the S(q�

�
� 0).

In other terms, almost nonreactive recrossings initiated from the CTBP state
occur because the real dividing surface mainly distributes outwards to the
OCT side from the S(q

�
� 0), while the less frequent nonreactive recrossings

from the other OCT state occur when the system finds an edge of the
reaction bottleneck, that is, a tiny part of the dividing hypersurface in the
phase space.

We also found [41] that besides total energy, the velocity across the
transition state plays a major role in many-dof systems to migrate the
reaction bottleneck outward from the naive dividing surface S(q

�
� 0). A

similar picture has been observed by Pechukas and co-workers [37] in 2D
Hamiltonian systems, that is, as energy increases, pairs of the periodic orbit
dividing surfaces (PODSs) appearing on each reactant and product side
migrate outwards, toward reactant and product state, and the outermost
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PODS can be identified as the reaction bottleneck. However, their crucial
idea is based on the findings of pure periodic orbits in the saddle region. In
many-body systems with more than three dof, the saddle-crossing dynamics
often exhibits chaos due to resonance among nonreactive stable modes,
extinguishing any periodic orbit in that region. As far as we know, this is
the first example to picture reaction bottlenecks for such many-dof systems.

E. ‘‘Extract’’ Invariant Stable and Unstable Manifolds in Transition States

To identify those parts of space (either configurational, or phase space) in
which invariants of motion ‘‘actually’’ survive or break during the course of
dynamical evolution, obeying the exact Hamiltonian, we proposed [43, 44]
‘‘local invariancy analysis’’, in terms of a new concept of ‘‘duration of
regularity (�)’’, for each mode of the system, at each ith order of perturba-
tion; these are the residence times each mode remains close to its near-
constant values of the variables, as determined by a chosen bound on the
fluctuation �J� or �
� ; for example, �J� for mode k, is

�J� ���
�

(p(t� �), q(t � �)) �J� ���
�

(p(t), q(t))� �J� (2.59)

By transforming a time series of the variables, denoted hereinafter as x(t),
to a sequence of stationary points, . . . min[i]�max[i�1]�min[i�2]��
along x(t) with the corresponding times t[i], and choosing all the possible
combinations of max[i] and min[ j], one can calculate each residence
time � for which x(t) traverses each fluctuation window �x defined as
max[i]�min[ j]. For a bundle of x(t), we can calculate how frequently x(t)
traverses the region of a certain fluctuation window �x for a certain �, that
is, residence probability, say, P

�
(�x; �), and also several distinct forms of

joint probabilities, P
���

(�
�
, �

�
, . . . , �

�
; �) where �

�
is either �x, x, �x�, or x�

of any other variable x�(t), x� and x are the short-term averages of x�(t) and
x(t) for a certain period �, say, from t� to t�� �, for example,

x��
1

� �
�
��

�


x�(t)dt (2.60)

This enables us to extract and visualize the stable and unstable invariant
manifolds along the reaction coordinate in the phase space, to and from the
hyperbolic point of the transition state of a many-body nonlinear system.
P
�
(�J� ��	

�
, p�

�
, q�

�
; �) and P

�
(�J� ��	

�
, p

�
, q

�
; �) shown in Figure 2.13 can tell us

how the system distributes in the two-dimensional (p�
�
(p, q), q�

�
(p, q)) and

(p
�
, q

�
) spaces while it retains its local, approximate invariant of action

J� ��	
�

(p, q) for a certain locality, ��J� � 0.05 and �� 0.5, in the vicinity of
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Figure 2.13. Probability distributions of approximate invariants of action J� ��	
�

(p, q) on
(p� ��	

�
(p, q), q� ��	

�
(p, q)) and (p

�
, q

�
) at E� 0.1, 0.5, and 1.0� in the region of saddle I: �J� � 0.05

and �� 0.5.

saddle I at the three distinct energies. The figures clearly capture the
existence of a local near invariant of motion in the reactive coordinate
q�
�
(p, q) even at moderately high energy, �E� 0.5� (such invariant regions

in the nonreactive dof totally disappear at E� 0.5�). The clear ‘‘X’’ shapes
of the 2D contour maps on (p� ��	

�
(p, q), q� ��	

�
(p, q)) at all the three energies

indicate that, without any explicit assumption of the separation of time
scales associated with individual modes, as expected from Eqs. (2.8) and
(2.9), one can extract and visualize the stable and unstable invariant
manifolds, at least in the region of the first-rank saddle, along the 1D
reaction coordinate q�

�
(p, q) in many-body nonlinear systems, just like that

of a 1D, integrable pendulum.
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These figures should be contrasted with the corresponding diffuse con-
tour maps in the conventional (p

�
, q

�
) plane, especially, at E� 0.5� . The

more striking and significant consequence is this; the rather ‘‘long-lived’’
approximate invariant J�

�
(p, q), around the origin, p�

�
(p, q) � q�

�
(p, q) � 0,

emerges with an increase of energy, even surviving at 1.0� , despite the
consequent high passage velocity through the saddle (indicated by the
arrows in the figures). Such a long-persistent invariant around that point
could not be observed in the quasiregular region, up to 0.1� . As shown in
Eqs. (2.8) and (2.9), if approximate invariants of action J�

�
and frequency 
�

�
survive, the entire phase-space flow (p�

�
q�
�
) should be just like those of a 1D

integrable pendulum, and hence no sharp spike should appear in the region
where such invariants exist.

The sharp spike around the origin p�
�
� q�

�
� 0 in the probability dis-

tribution of approximate constant of action J�
�
(p, q) implies that slow

passages through the reaction bottleneck tend to spoil the approximate
invariant of frequency, and the system’s reactive dof (p�

�
, q�

�
) couples with the

other nonreactive dof throughout the small region p�
�
� q�

�
� 0. The rather

long residence in the region of constant J�
�
implies that the system is

transiently trapped in the nonreactive space during the course of the
reaction due to the mode—mode couplings that emerge with increasing total
energy. In such an intermediate regime between these two energy regions,
any simplistic picture, ballistic or diffusive, of the system’s passage through
transition states may be spoiled.

We also pointed out that with a residence time � much shorter than that
in Figure 2.13 (with the same fluctuation bound), for example, � 0.2, a
similar sharp spike exists at E� 0.1� around the origin, p� ��	

�
(p, q) �

q� ��	
�

(p, q) � 0. This finding implies that the original Hamiltonian cannot
completely be transformed to an exact, integrable Hamiltonian at second
order in the LCPT calculation in the real situation at E� 0.1� . However, as
inferred [40] from the analysis of the transmission coefficients �

�
using the

phase-space dividing hypersurface S(q� ��	
�

(p, q) � 0), the system could be
regarded as ‘‘fully’’ separable at 0.1� in the transition state because the
transmission coefficient �

�
’s value was evaluated to be 1.00000, which

suggests that the different rates of energy exchange between the nonreactive
dof and the reactive dof make the nonreactive near-integrable subset of
modes contribute far less, and with less influence on the kinetics, than those
modes in the chaotic subset. Recall that the Rice—Ramsperger—
Kassel—Marcus (RRKM) theory [6—8] postulates that the greater the
number of dof that couple with the reactive mode, the slower is the process
of a specific mode gathering the energy required to react. If some nonreac-
tive modes remain very regular, we might expect them to contribute nothing
at all toward trapping the trajectory.
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F. A Brief Comment on Semiclassical Theories

At the end of this section, we want to make some comments on the
applicability of LCPT to semiclassical theories. In this discussion, we
neglected tunneling through the potential barriers for the sake of simplicity,
but rather have focused on the (classical) physical foundations of transitions
buried in the complexity of reactions. However, CPT, including normal form
theories, also provides us with a versatile means to address multidimen-
sional tunneling problems [65—67]. In the scope of the semiclassical WKB
approach, Keshavamurthy and Miller [65] first developed a semiclassical
theory to extract the 1D phase-space path along which the tunneling action
is conserved locally, obeying the original nonintegrable Hamiltonian. By
using the following two-mode nonlinear reacting system:

H(p, q) �
1

2m
(p�

�
� p�

�
) �

1

2
aq�

�
�

1

3
bq�

�
�

1

2
m
� �q��

cq
�

m
��
�

(2.61)

where the parameters a and b were chosen to correspond to a barrier height
of 7.4 kcal/mol, the mass m of a hydrogen atom, the harmonic frequency 

to be 300 cm��, and c a coupling constant (typical values for hydrogen-
atom transfer reactions), they showed that all the actions are well conserved
irrespective of the coupling strength c. Moreover, the value of the new
Hamiltonian truncated at the second-order E

����
is as close as possible to the

exact total energy, in the local saddle region. The unimolecular decay rate
evaluated by the tunneling time, chosen to be that when J�

�
is locally

conserved (stationary) in time, coincides well with the exact quantum rate,
even in a case in which strong coupling spoils any (apparent) mode-
specificity of the reaction.

We infer here that this is always true irrespective of the kind of system,
if the number of degrees-of-freedomN is two. It is because there is no source
to yield ‘‘resonance’’ by a single imaginary- and a single real-frequency
mode. If N is �2, it is no longer integrable in the saddles except at just
above the threshold energy because of resonance arising from nonreactive—
nonreactive modes’ nonlinear couplings. As discussed in Section IV, there
should be at least three distinct energy ranges in terms of regularity of
transitions. In other terms, we can classify energy ranges according to the
extent of the system to possess ‘‘good’’ approximate, local quantum num-
bers. In the semichaotic region, E

����
totally differs from the exact total

energy, and the conventional semiclassical TST breaks down completely.
Nevertheless, the tunneling action along the phase-space path is quite likely
conserved during the events. One may thus anticipate that their semiclassi-
cal approach [65] is quite applicable through a wide range of total energies
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Figure 2.14. Schematic picture of hierarchical regularity in transition states.

above the saddle point, in which the system is manifestly chaotic (even more
than they might have expected!).

IV. HIERARCHICAL REGULARITY IN TRANSITION STATES

As seen in Sections I—III, there are at least three distinct energy regions
above the saddle point energy that can be classified in terms of the regularity
of saddle-crossing dynamics. We articulated the distinctions among them as
follows:

Quasiregular Region: All or almost all the degrees of freedom of the
system locally maintain approximate constants of motion in the
transition state. The saddle crossing dynamics from well to well is fully
deterministic, obeying M-analytical solutions [see Eqs. (2.8) and (2.9)]
for systems of M degrees of freedom. The dynamical correlation
between incoming and outgoing trajectories from and to the transition
state is quite strong, and the dimensionality of saddle crossings is
essentially one, corresponding to the reactive mode q�

�
in the (p� , q� )

space. Barrier recrossing motions observed over a naive dividing
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surface defined in the configurational space are all rotated away to
no-return single crossing motions across a phase-space dividing sur-
face S(q�

�
(p, q) � 0). If the vibrational energy relaxes fast enough to let

us assume quasiequilibration in the wells, the initial conditions
(p� (0), q� (0)) of the system as it enters the transition state from either of
the stable states can be simply sampled from microcanonical en-
sembles. One may then evaluate the (classical) exact rate constant, free
from the recrossing problem. The staircase energy dependence ob-
served by Lovejoy et al. [30, 31] for highly vibrationally excited ketene
indicates that the transverse vibrational modes might indeed be
approximately invariants of motion [33]. We classify such a range of
energy, in which the rate coefficient shows staircase structure, as
corresponding to this quasiregular region. Note that the incommen-
surable situations likely happen for systems having peculiar or specific
mode(s), that is, modes effectively separable in time. We found in the
proton-transfer reaction of malonaldehyde [38, 39], involving the
proton movement, the O�O stretching, the out-of-plane wagging, and
C�O stretching motions, that dynamics over the saddle is well
regularized through all the dof, even at a moderately high total energy
of the system, for example, 1.0 kcal/mol above the activation barrier
whose height is 5.0 kcal/mol.

Intermediate, Semichaotic Region: Due to significant (near-)resonance
emerging at these intermediate energies, almost all the approximate
invariants of motion disappear, consequently inducing a topological
change in dynamics from quasiregular-to-chaotic saddle crossings.
However, at least one approximate invariant of motion survives
during the saddle crossings, associated with the reactive coordinate
q�
�

(p, q). This is due to the fact that an arbitrary combination of modes
cannot satisfy the resonance conditions of Eq. (2.12) if one mode has
an imaginary frequency, the reactive mode in this case, is included in
the combination. The other frequencies associated with nonreactive
modes fall on the real axis, orthogonal to the imaginary axis in the
complex � plane. That is,

�
�
�
���

†n
�


����


�
��O(��) (2.62)

for arbitrary integers n
�
with n

�
� 0, where �† denotes the combination

including the reactive mode. This finding was first pointed out by
Hernandez and Miller in their semiclassical TST studies [60]. In this
region, the dynamical correlation between incoming and outgoing
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trajectories to and from the transition state becomes weak (but non-
zero!), and the saddle crossings’ dimensionality is �M� 1, excluding
the 1D of q�

�
, in this region. If the associated imaginary frequency


�
�

(p, q) is approximately constant during a saddle crossing as the
action J�

�
(p, q) is, the reaction coordinate q�

�
decouples from a subspace

composed of the other nonreactive dof, in which the system dynamics
is manifestly chaotic. The q�

�
dynamics is then represented analytically

during saddle crossings, and a dividing surface S(q�
�

(p, q) � 0) can still
be extracted free from the recrossing problem, even for saddle cross-
ings chaotic in the nonreactive modes.

We may expect that various kinds of resonance zones occur in the
transition state, densely distributed, associated with very complicated
patterns of level crossings in phase space, in a so-called ‘‘Arnold web’’
[53]. The transport among the states in such a web in many-dof
systems raises many interesting and unresolved questions [24, 68, 69].
By using their local frequency analysis, Martens et al. [68] showed in
a three-dof model for intramolecular energy flow in the OCS molecule
that, although the motion is chaotic, some local frequencies are often
fairly constant over times corresponding to many vibrational periods
when the system moves along resonance zones, and long time-
correlations are often observed near the junctions of resonance zones.
As shown in Figures 7 [40] and 6 and 7 [44], one can see that in
addition to the reactive mode frequency 
� ��	

�
(p, q), some other fre-

quencies are also fairly constant through the saddle region, although
the corresponding actions do not maintain constancy at all. We
may expect that the LCPT frequency analysis will provide us with
a versatile tool to analyze the resonance mechanism in chaotic
motions.

Stochastic (�Fully Developed Chaotic) Region: The system becomes
subject to considerable nonlinearities of the PES at much higher
energies, and the convergence radius becomes negligibly small for the
LCPT near the fixed (saddle) point for the invariant of motion
associated with the reactive coordinate q�

�
. In this energy region, no

approximate invariant of motion can be expected to exist, even in the
passage over the saddle between wells.

The saddle-crossing dynamics is entirely stochastic, with dimen-
sionality essentially equal to the number of degrees of freedom of the
system. It may not be possible to extract a dividing surface free from
barrier recrossings. Going from semichaotic into fully developed
chaotic regions, a new type of phase-space bottleneck emerges, that
makes a reacting system increasingly trapped in the transition state as
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the total energy of the system increases. This emergence of a new
bottleneck challenges the simple pictures one has supposed for a
reacting system crossing a transition state, that is, both the ballistic (or
separable) and diffusive transitions, and sheds light on the nature of
trapping of a reacting system in the transition state; one should
distinguish ‘‘apparent’’ and ‘‘true’’ trappings. In the former, although
the system looks transiently trapped around a saddle, its reaction
proceeds, independently, along the nearly separable reactive degree of
freedom in phase space, but in the latter, the system not only looks
trapped but also resists proceeding along any reactive degree of
freedom one might choose, due to the nonvanishing mode-couplings
appearing between semichaotic and fully developed chaotic energy
regimes. To describe reaction dynamics in this region, it will probably
be more convenient to go back to the conventional reaction path
approach in the configuration space q. In such a case, the variational
TST approach, to choose the dividing surface to minimize the reactive
flux, becomes one reasonable means to address the problem [9—11].

V. CONCLUDING REMARKS AND FUTURE PROSPECTS

So far, one has conventionally taken a reaction coordinate in the configur-
ational space, for example, a distance between atoms to form or break their
bond, a reactive normal coordinate, or (configurational) steepest descent
path [70, 71]. Our results have shown the persistence of the approximate
invariants of motion associated with the reaction coordinate q�

�
(p, q), at

least, in the region of the (first-rank) saddle even in a ‘‘sea’’ of high-
dimensional chaos, and strongly support the use of the concept of a single,
nearly-separable reactive degree of freedom in the system’s phase space, a
dof that is as free as possible from coupling to all the rest of the dof. This
result immediately tells us that the observed deviations from unity of the
conventional transmission coefficient � should be due to the choice of the
reaction coordinate q

�
of the system along which one might want to see the

reaction event, whenever the � arises from the recrossing problem.
The remaining ambiguity in reaction rate theories is the assumption of

local vibrational equilibrium. Recall that reactions involving (a) chemical
bond formation and/or cleavage may have, as a typical activation energy, a
few tens of kilocalories per mole while an average thermal energy associated
with a single dof is �0.6 kcal/mol at room temperature. Therefore, we may
anticipate that such chemical reactions are regarded as very rare events, and
any (strongly chaotic) many-dimensional reacting system moves through all
the accessible phase space in the reactant domain before finding the
transition state.
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However, in some unimolecular reactions of a few degrees of freedom,
[24—26], there is a dynamical bottleneck to intramolecular energy transfer
even in the reactant well. That is, cantori appear to form partial barriers
between irregular regions of phase space. As yet, there is no general answer
or analytical tool to determine whether such a dynamical bottleneck even
exists for larger nonlinear reacting systems, say, �10 dof.

Along this direction, although we only argued how the invariant of
frequency arises, varying the ratios of frequencies 
�

�
among the modes

[68, 72, 73] should shed light on what kinds of energy flows take place
among the modes of q�

�
(p, q) space, elucidated about potential minima.

Obviously, the more the dof, the more possible combinations emerge to
make the system very complicated. Another possible diagnostic method to
look into this in many-body systems would be to execute the backward
trajectory calculation, starting on the phase-space dividing hypersurface
S(q�

�
(p, q) � 0), sampled from the microcanonical ensemble. If the system

exhibits an invariant of motion for a certain time in the reactant phase
space, that is, if the system is trapped in a certain limited region for some
period, this should imply how the local equilibrium is suppressed in the
reaction. The backward calculations initiated with large momenta p�

�
(p, q)

on that dividing hypersurface, that is, the bundle of the fast transitions from
the reactant to product if one inverts the time, would reveal how any mode-
specific nature of a reaction relates to the local topography of the phase
space in the reactant state.

People have usually supposed that the elusive transition state is localized
somewhere in the vicinity of a first-rank saddle linking reactant and product
states, and that the evolution of the reactions can be decomposed into the
two distinct parts, that is, how the system passes into the transition state
from the reactant state, and then how it leaves there after its arrival. These
have enabled us to argue the physical (classical) foundation of the deviation
from the theories [as represented by a conventional �(�1)], in terms of how
violated ‘‘local equilibrium’’, and ‘‘no-return’’ assumptions may be. However,
if, for example, the energy barrier of the reacting systems become comparable
with the average thermal energy of a single dof, such a common scenario
implicitly assumed so far should no longer be valid. If a dividing hypersur-
face were still to exist even in such cases, it might not be localized near the
saddles but somehow delocalized throughout the whole accessible phase
space as the separatrix theories [24—26] indicate for a few-dof systems. One
may anticipate that the stable and unstable invariant manifolds we could
extract in the region of the saddles even in a sea of many-body chaos can be
connected through the rest of the phase space, and this provides us with an
essential clue to generalize separatrix theories to multidimensional systems.
Recently, Wiggins et al. [74] just started their research along this scenario.

Biological reactions take place on complex energy landscapes, involving
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sequential crossings over multiple saddles, which, however, result in specific
robust functions in living organisms. The question arising now is this: Can
we understand why such robust functions or efficiencies exist in biological
systems? We start from a viewpoint that each reaction crossing over each
saddle takes place in dynamically independent fashion, that is, the local
equilibration is considered to be attained quickly in each basin before the
system goes to the next saddle, so the system loses all dynamical memories.
As yet, of course, there is no answer as to whether dynamical connectivity
or non-Markovian nature along the sequential multiple saddle crossing
dynamics plays a significant role in maintaining robust functions.

One of the relevant interesting papers on protein foldings is that by
Garcı́a et al [75]. They showed how non-Brownian strange kinetics emerge
in multi-basin dynamics trajectories generated by all-atom MD simulations
of cytochrome c in aqueous solution at a wide range of temperature. They
used a so-called molecule optimal dynamic coordinates (MODC) derived by
a linear transformation of the Cartesian coordinates of the protein system,
which best represent the configurational protein fluctuations (in a least
square sense). They found that some slow MODC manifestly exhibits
non-Brownian dynamics, that is, protein motions are more suppressed and
cover less configurational space than a normal Brownian process on a short
time scale, but they become more enhanced as a faster, well-concerted
motion on a long time scale between a temperature at which the protein is
in the native state and a temperature above melting (see also [76—79]).

The Lie techniques may provide us with the physical footings or
analytical means to elucidate dynamical correlations among successive
saddle crossings by enabling us to scrutinize ‘‘connectivity’’ of manifolds
from and to the sequential saddle points and ‘‘extent of volume’’ of the
region of a junction of manifolds in terms of the backward system trajecto-
ries initiated from S(q�

�
(p, q) � 0) at one saddle point and the forward from

the other S(q�
�
(p, q) � 0) at the previous saddle point, through which the

system has passed before reaching the first [80].
At high energies above the lowest, presumably (but not necessarily)

first-rank saddle, the system trajectories may pass over higher rank saddles
of the PES. These provides us with a new, untouched, exciting problem, that
is, what is the role of resonance in the imaginary 
-plane for the bifurcation?
(This even arises in the degenerate bending modes for a linear transition
state of a triatomic molecule.) This is one of the most exciting questions,
especially for relaxation dynamics on a rugged PES, if the system finds
higher rank saddles, which may be densely distributed in the regions of high
potential energies, and would pass through such complicated regions at least
as frequently as through the lowest, first-rank transition states. This will
require going back to the fundamental question of what the transition state
is, that is, whether a dividing hypersurface could still exist or be definable,
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in terms of separating the space of the system into regions identifiable with
individual stable states.
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APPENDIX

A. The Proof of Eqs. (2.8) and (2.9)

The equation of motion of new coordinates q� and momenta p� can straight-
forwardly be solved, with the new Hamiltonian H� independent of the new
angle variable �� .

dp�
�

dt
��

�H� (J� )
�q�
�

��
�H� (J� )
�J�

�

�J�
�

�q�
�

(A.1)

��
�
�
(J� )


�
q�
�

(A.2)

dq�
�

dt
�

�H� (J� )
�p�
�

�
�H� (J� )
�J�

�

�J�
�

�p�
�

(A.3)

�

�
�
(J� )


�

p�
�

(A.4)

By differentiating Eq. (A.4) in time t and combining Eq. (A.2), one can
obtain

d�q�
�

dt�
�


�
�
(J� )


�

dp�
�

dt
��
� �

�
(J� )q�

�
(A.5)

Here, the last equal signs of Eqs. (A.2) and (A.4) follow from Eq. (2.5) and

J�
�
�

1

2� � p�
�
dq�

�
�

p� �
�
�
�

�
q� �
�

2

�

(A.6)

One can easily see Eq. (A.6) as follows: as described in Appendix C, the new
Hamiltonian H�

�
at zeroth-order corresponds to replacing the canonical

variables, for example, (p, q), (J,�), . . . , in the counterpart of old Hamil-
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tonian H
�
by the corresponding, new canonical variables, (p� , q� ), (J� ,�� ), . . .

H�
�
(p� , q� ) �H

�
(p� , q� ) (A.7)

��
�

1

2
(p� �
�
�
�

�
q� �
�
) (A.8)

��
�



�
J�
�

(A.9)

[one can also verify the second equal sign in Eq. (A.6) by inserting Eqs.
(2.10) and (2.11) into Eq. (A.6)].

B. Lie Transforms

Let us suppose the following Hamilton’s equations of motion:

dp�
�

d�
� �

�W
�q�
�

(A.10)

dq�
�

d�
�

�W
�p�
�

(A.11)

where � and W are ‘‘time’’ and ‘‘Hamiltonian’’, a function of canonical
coordinates q� and its conjugate canonical momenta p� . These can be
represented collectively in the notation z

�
� (p�

�
, q�
�
):

dz
�

d�
� �z

�
,W (z)���L

�
z
�

(A.12)

Here � � denotes Poisson bracket:

�u, v���
�
�
�u
�q�

�

�v
�p�
�

�
�v
�q�
�

�u
�p�
�
� (A.13)

which has the following properties, for arbitrary differentiable functions u, v,
and w,

�u, v����v, u� (A.14)

�u, v�w�� �u, v�� �u, w� (A.15)

�u, vw�� �u, v�w� v�u, w� (A.16)
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and

�u, �v, w��� �v, �w, u��� �w, �u, v��� 0 (A.17)

Recall that for a set of any canonical variables, for example (p� , q� ),

�q�
�
, p�
�
�� �

��
�q�
�
, q�
�
�� �p�

�
, p�
�
�� 0 (A.18)

(�
��
is Kronecker delta) and, in turn, a set of variables that satisfy Eq. (A.18)

is canonical.
An operator, L

�
(��W, �), called the L ie derivative generated by W, obeys

the following properties easily derived from Eqs. (A.15)—(A.17):

L
�
(�u��v) � �L

�
u��L

�
v (A.19)

L
�
uv� uL

�
v� vL

�
u (A.20)

L
�
�u, v�� �u, L

�
v�� �L

�
u, v� (A.21)

L
�
L
�

� L
����

� L
�
L
�

(A.22)

where �, �, and V are any numbers and any differentiable function. The n
times repeated operations of L

�
to Eqs. (A.19)—(A.21) give

L �
�
(�u��v) � �L �

�
u��L �

�
v (A.23)

L �
�
uv�

�
�
���

�
C
�
(L �
�
u)(L ���

�
v) (A.24)

L �
�
�u, v��

�
�
���

�
C
�
�L �

�
u, L ���

�
v� (A.25)

and, hence,

e����uv� (e����u)(�����v) (A.26)

e�����u, v�� �e����u, e����v� (A.27)

1. Autonomous Cases

The formal solution of Eq. (A.12) can be represented as

z(�) � e����z(0)�T z(0) (A.28)

for autonomous systems having no explicit dependence on ‘‘time’’ � of
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‘‘Hamiltonian’’ W. Here, we introduce the evolution operator T for brevity.
It can be easily proved for any transforms described by this that if z(0)

are canonical, z(�) are also canonical (and vice versa) as follows: Let us
designate the phase-space variables z at the ‘‘time’’ being zero as (p, q) and
those at the ‘‘time’’ � as (p� , q� ). Then,

p�
�
�Tp

�
� e���W (p, q)p

�
� p�

�
(p, q; �) (A.29)

q�
�
�Tq

�
� e���W (p, q)q

�
� q�

�
(p, q; �) (A.30)

and

�q�
�
, p�
�
�� �Tq

�
, Tp

�
��T �q

�
, p
�
� (A.31)

�q�
�
, q�
�
�� �Tq

�
, Tq

�
��T �q

�
, q
�
� (A.32)

�p�
�
, p�
�
�� �Tp

�
, Tp

�
��T �p

�
, p
�
� (A.33)

where the second equal signs of these three equations are thanks to Eq.
(A.27). Therefore, if (p, q) is canonical [i.e., Eq. (A.18) is satisfied for (p, q)],
(p� , q� ) is also canonical because

�q�
�
, p�
�
��T �

��
� e�����

��
� �

��
(A.34)

�q�
�
, q�
�
�� �p�

�
, p�
�
��T · 0� 0 (A.35)

Note that the successive operations of L W (p, q) to p
�
or q

�
usually produce,

complicated, nonlinear functions expressed explicitly in terms of (p, q). In
Eqs. (A.29) and (A.30), p�

�
and q�

�
are represented as functions of the ‘‘time’’

� and the initial condition (p, q) along the dynamical evolution obeying the
‘‘Hamiltonian’’ W, that is, p�

�
(p, q; 0)�p

�
, q�
�
(p, q; 0)�q

�
.

By assuming the inverse transformation from � to 0 in the ‘‘time’’, that is,

z(0) �T ��z(�) (A.36)

in other terms,

p
�
�T ��p�

�
� e��W (p� , q� )p�

�
� p

�
(p� , q� ; �) (A.37)

q
�
�T ��q�

�
� e��W (p� , q� )q�

�
� q

�
(p� , q� ; �) (A.38)

where T T���T��T � 1, it can also be proved straightforwardly by the
premultiplication of Eqs. (A.31)—(A.32) by inverse evolution operator T��

that, if (p� , q� ) is canonical, (p, q) is also canonical.
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Figure 2.15. The schematic picture of the Lie transforms: If W is free from the ‘‘virtual’’
time t explicitly, the functional structure of W is preserved through the ‘‘time’’ evolution.

Figure 2.15 shows pictorially what the Lie transforms and its inversion
perform: Tz(0) transforms, for example, a point A in the (p, q) coordinate
system to a point B in the other (p� , q� ) system, which corresponds to a
‘‘virtual’’ time evolution of the phase-space variable (p

�
, q
�
) from ‘‘time’’ 0 to

� driven by a ‘‘Hamiltonian’’ W (p, q). In turn, T��z(�) transforms the point
B in (p� , q� ) to the point A in (p, q), the reversed-time evolution of (p�

�
, q�
�
) from

� to 0 driven by a ‘‘Hamiltonian’’ W (p� , q� ), just replaced the ‘‘symbol’’ p
�
and

q
�
in W (p, q) by p�

�
and q�

�
, whose functional form is unchanged.

How Does a L ie Transform Operate on Functions? Given an arbitrary
differentiable function f (p, q), let us consider the Lie transforms of the
function, T f (p, q).

T f (p, q) � e����f (p, q) � �
���

��
n!
(�L

�
)�f (p, q)� g(p, q; �) (A.39)

where the recursive operations of the Lie derivatives by W (p, q) on the
function f yield a new function, denoted hereafter g, represented as a
nonlinear function of p and q, and �. The resultant, transformed new
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function g(p, q; �) can be interpreted as follows:

L
�
f � �W, f ���

�
�
�W
�q�
�

�f
�p�

�

�
�W
�p�
�

�f
�q�
�
� (A.40)

���
�
�
dp�

�
d�

�f
�p�
�

�
dq�
�

d�
�f
�q�
�
� (A.41)

��
df

d�
(A.42)

and, for example, the operation twice of the Lie derivatives on f, L �
�
f,

implies

L �
�
f � L

�
(L
�
f ) � L

� ��
df

d���
d�f

d��
(A.43)

and thus by recurrence over n,

(�L
�
)�f �

d�f

d��
(A.44)

Therefore, the new function g(z(0); �) is represented as

g(z(0); �) �T f (z(0)) � �
���

��
n!
(�L W (z(0)))�f (z(0)) � �

���

��
n!

d�f

d�� ����

(A.45)

The last term corresponds to a Taylor series in ‘‘time’’ � (about the origin)
of the function f , which does not depend explicitly on � but implicitly
through́ z. Thus, we can lead

g(z(0); �) � f (z(�)) � f (Tz(0)) (A.46)

One can see that the new function g(z(0); �) represents the functional value
f at the point z(�) as a function of the initial point z(0) and the ‘‘time’’ �,
where the phase space variables z evolve in the ‘‘time’’ obeying ‘‘Hamil-
tonian’’ W.

One can interpret schematically what the Lie transforms and its inversion
perform on function f in Figure 2.16: T f (p, q) (as indicated by an arrow in
the top of the figure) transforms f evaluated at a point A, (p

�
, q

�
) in the

(p, q) system to a new function, say, g(p, q; �), represented at the same point
A, whose functional value is equivalent to f (p�

�
, q�

�
) evaluated at a point B
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Figure 2.16. The schematic picture of the Lie transforms on a function f.

in the (p� , q� ) system, which corresponds to a ‘‘virtual’’ time evolution driven
byW (p, q), (T p

�
, T q

�
). In turn, T��f (p� , q� ) (as indicated by an another arrow

in the bottom of the figure) transforms f evaluated at the point B in (p� , q� )
to a new function, say, g�(p� , q� ; �), at the same point B, whose functional value
is equivalent to f (pA , qA) evaluated at the point A in the (p, q) system.

Finally, the Lie transforms on functions f generated by ‘‘Hamiltonian’’
W is represented as

T f (z(0)) � f (z(�)) � f (T z(0)) � g(z(0); �) (A.47)

or

T f (p, q) � f (p� , q� ) � f (T p, T q) � g(p, q; �) (A.48)
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It implies that for an arbitrary differentiable function f evaluated at (p, q),
the Lie transforms provides us with a new function g(p, q; �), representing
the functional value of f at (p� , q� ), whose all components p�

�
and q�

�
obey

p�
�
� Tp

�
and q�

�
� Tq

�
.

For example, if f is the ‘‘Hamiltonian’’ W,

W (p� , q� ) �W (e����p, e����q) (A.49)

� e����W (p, q) (A.50)

�W (p, q) (A.51)

because L �
�
W � 0 except n� 0. That is, the Lie transforms generated by W,

which does not depend on � explicitly, preserves the functional form of W
itself along the dynamical evolution in ‘‘time’’ �.

Differentiating the equation T f (p, q) � f (p� , q� ) with respect to �,

dT (�)
d�

f (p, q) ��
�
�
�f (p� , q� )
�q�
�

dq�
�

d�
�

�f (p� , q� )
�p�

�

dp�
�

d��
��

�
�
�f (p� , q� )
�q�
�

�W
�p�

�

�
�f (p� , q� )
�p�
�

�W
�q�
�
�

� � f (p� , q� ), W (p� , q� )�

� �T (�) f (p, q), T (�)W (p, q)�

�T (�)� f (p, q), W (p, q)�

��T (�)L
�
f (p, q)

which holds for all f (p, q). Thus, one can have

dT

d�
��T L

�
(A.52)

Similarly, differentiating the equation TT��� 1 with respect to � yields

dT��

d�
� L

�
T�� (A.53)
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because

0�
dT (�)T ��(�)

d�
�

dT

d�
T���T

dT��

d�

��T L
�
T���T

dT��

d�

one can have Eq. (A.53) by premultiplying the final equation by T��.

2. Nonautonomous Cases

The Lie transforms for which the ‘‘Hamiltonian’’ W explicitly depends on
‘‘time’’ � preserve the formal properties of the autonomous W (p� , q� ). Hamil-
ton’s equations of motion do not change form for nonautonomous systems:

dp�
�

d�
� �p�

�
,W ���

�W (p� , q� , �)
�q�
�

dq�
�

d�
� �q�

�
,W ��

�W (p� , q� , �)
�p�

�

and collectively,

dz
�

d�
� �z

�
, W (z, �)���L

�
z
�

The second derivatives of p�
�
over ‘‘time’’ � becomes,

d�p�
�

d��
�

d

d�
�p�
�
,W �

��
�
�
�
�q�
�

�p�
�
,W �

dq�
�

d�
�

�
�p�
�

�p�
�
,W �

dp�
�

d� ��
�
��

�p�
�
,W �

��
�
�
�
�q�
�

�p�
�
,W �

�W
�p�
�

�
�
�p�

�

�p�
�
,W �

�W
�q�
�
���p� � ,

�W
�� 	

� ��p�
�
,W �,W ���p� � ,

�W
�� 	 (A.54)
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and similarly,

d�q�
�

d��
� ��q�

�
,W �,W ���q� � ,

�W
�� 	 (A.55)

One can combine these two expressions collectively in terms of z
�
:

d�z
�

d��
�

d

d�
�z
�
,W �� ��z

�
,W �,W ���z� ,

�W
�� 	 (A.56)

�
d

d�
(�

��
)z
�
���

��
z
�

(A.57)

where a newly introduced operator �
�
is defined by

�
�
� �W, ��

�
��

� L
�

�
�
��

(A.58)

and easily verify that the nth derivatives of z
�
in ‘‘time’’ � is given, in terms

of �
��

, by

d�z
�

d��
� (�

��
)�z

�
(A.59)

Thus, the expansion of the solution z(�) in power series of � around the
origin result in the expressions using �

��
:

z
�
(�) �


�
���

��
n!

d�z
�

d�� ����

�

�
���

��
n!
(�

��
)�z

�
����

(A.60)

� exp ���
�
L
�	�
� d��� z�(0) �Tz

�
(0) (A.61)

p�
�
� Tp

�
� exp ���

�
L W (p, q; ��) d��� p�� p�

�
(p, q; �) (A.29a)

q�
�
� Tq

�
� exp ���

�
L W (p, q; ��) d��� q�� q�

�
(p, q; �) (A.30a)

just the same as the Lie transforms generated by an autonomous W (p, q). It
can easily be verified that �

�
satisfy similar properties of L

�
that just

replace L
�
by �

�
in Eqs. (A.19)—(A.25). The only exception is that, instead
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of Eq. (A.22), �
�
holds

�V�W ��W�V � L �V,W � � L �W
��

�
�V
��

(A.62)

Hence, one sees immediately that,

Tuv� (Tu)(Tv) (A.26a)

T �u, v�� �Tu, Tv� (A.27a)

and that Eqs. (A.29a) and (A.30a) yield a completely canonical mapping like
those by an autonomous W (p� , q� ).

In general, for an arbitrary differentiable function f (p� , q� ), the nth deriva-
tives of f are given by

d�

d��
f � (�

��
)�f

because

df

d�
��

�
�
�f
�q�
�

dq�
�

d�
�

�f
�p�
�

dp�
�

d� �
��

�
�
�f
�q�
�

�W
�p�
�

�
�f
�p�
�

�W
�q�

�
�� � f,W ���

��
f

d�f

d��
�

d

d�
(�

��
f ) � ��

��
f,W ��

�(�
��

f )

��

���
��

f

and so forth.
Consequently,

f (p� , q� ) �

�
���

��
n!

d�f

d�� ����

�

�
���

��
n!
(�

��
)�f ����

� exp ���
�
L W (p, q; ��) d��� f (p, q) �T f (p, q)

� g(p, q; �) (A.45a)
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As argued in autonomous cases, g(p, q; �) implies that while the functional
value of T f (p, q) is exactly equal to f (p� , q� ), the transformed, usually
complicated, nonlinear function becomes represented as a function of p and
q, and �, whose functional form differs from the original f.

Finally, the Lie transforms on functions f generated by a non-
autonomous ‘‘Hamiltonian’’ W can be represented as

T f (z(0)) � f (z(�)) � f (T z(0)) � g(z(0); �) (A.47a)

or

T f (p, q) � f (p� , q� ) � f (T p, T q) � g(p, q; �) (A.48a)

Here, one can see that we have the same formulations, Eqs. (A.47) and
(A.48), derived for autonomous W. One can easily see that Eqs. (A.52) and
(A.53), and the schematic interpretations of the Lie transforms, Figures 2.15
and 2.16 also hold for nonautonomous Lie transforms W (p� , q� , �), except the
‘‘Hamiltonian’’ W changes its form depending on the ‘‘time’’ � along the
‘‘time’’ evolution.

C. Perturbation Theory Based on Lie Transforms

It is well known that for any canonical transforms (p, q)� (p� , q� ) of an
autonomous system, the new Hamiltonian, denoted hereinafter H� , is related
to the old Hamiltonian H by

H� (p� , q� ) �H(p, q) (A.63)

Now let us suppose that the canonical transformation is brought about by
‘‘Lie transforms’’, and hence, in the z representation, this becomes

H� (z(�)) �H(z(0)) (A.64)

that is, one can see that the new Hamiltonian H� evaluated at the new point
z(�) along the dynamical evolution obeying W is equal to the old Hamil-
tonian H at the old point z(0).

By comparing this to the equation

f (z(�)) � g(z(0)) (A.65)
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[e.g., Eq. (A.47)] and applying f �T��g, one has

H� (z(�)) �T��H(z(�)) �H(z(0)) (A.66)

or,

H� (p� , q� ) �T��H(p� , q� ) �H(p, q) (A.67)

Here, the inverse evolution operator T�� brings the system dwelling at a
‘‘time’’ backward to a past in � from that ‘‘time’’ along the dynamical
evolution z; yielding H(z(0)), that is, H(p, q).

In cases that H, H� , and W (hence, also L
�
, T, T��) are expandable as

power series in �, one can obtain a recursive, perturbation series to yield a
desired new Hamiltonian.

H� �
���

��H
�

(A.68)

H� � �
���

��H�
�

(A.69)

W � �
���

��W
���

(A.70)

L
�

� �
���

��L
���

(A.71)

T � �
���

��T
�

(A.72)

T��� �
���

��T��
�

(A.73)

where

L
�
� �W

�
, � (A.74)

First, we derive a versatile perturbation series among the relations
between T

�
and T��

�
and L

�
. Inserting Eqs. (A.71) and (A.72) into Eq. (A.52),

and Eqs. (A.71) and (A.73) into Eq. (A.53), and equating like powers of �,
one can obtain a recursive relation for T

�
and T��

�
(n� 0):

T
�
��

1

n

���
�
���

T
�
L
���

(A.75)

T��
�

�
1

n

���
�
���

L
���

T��
�

(A.76)
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where T
�
� T��

�
� 1 because T

�
(T ��

�
) corresponds to T (T ��) at �� 0. For

example, to third order,

T
�
��L

�
(A.77)

T
�
��

1

2
L
�
�

1

2
L �
�

(A.78)

T
�
��

1

3
L
�
�

1

6
L
�
L
�
�

1

3
L
�
L
�
�

1

6
L �
�

(A.79)

T��
�

� L
�

(A.80)

T��
�

�
1

2
L
�
�

1

2
L �
�

(A.81)

T��
�

�
1

3
L
�
�

1

6
L
�
L
�
�

1

3
L
�
L
�
�

1

6
L �
�

(A.82)

(note that the T ’s and L ’s do not generally commute, e.g., L
�
L
�
� L

�
L
�
).

By inserting the series expansions of H� , T��, and H into H� � T�� H and
equating like powers of �, one can recursively solve the CPT with the Lie
transforms: to second order, the new Hamiltonian H� relates to the old
Hamiltonian H as follows:

�� :H�
�
�H

�
(A.83)

�� :H�
�
�T��

�
H

�
� T��

�
H

�
�H

�
� L

�
H

�
(A.84)

�H
�
�

dW
�

d�
(A.85)

�� :H�
�
�T��

�
H

�
� T��

�
H

�
�T��

�
H

�
(A.86)

�H
�
�

1

2
L
�
(H�

�
�H

�
) �

1

2
L
�
H

�
(A.87)

�H
�
�

1

2
�W

�
,H�

�
�H

�
��

1

2

dW
�

d�
(A.88)

Here,

L
�
H�

�
� L

�
H

�
� �W

�
,H

�
��

dW
�

d�
(A.89)
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where � is the time along the orbits obeying the ‘‘unperturbed’’ H
�
. In the

representations of Eqs. (A.68)—(A.89), we intentionally omitted the argu-
ments, that is, which kinds of forms of canonical variables we may use. The
above equations hold for all kinds of the forms because the Poisson bracket
calculation is canonically invariant, that is, the arguments themselves of the
functions in the Lie transforms are really dummy variables. Hereafter, we
use the arguments (p� , q� ) as the new canonical variables in Eqs. (A.83)—
(A.88).

From Eq. (A.83) it is straightforward at O(��) that H�
�
(p� , q� ) is a function

that just replaces the phase-space variables ( p, q) in H
�
with those (p� , q� ).

However this is only the exception; at each order beyond O(��), for each
condition, there successively appear two unknown quantities, for example,
H�

�
and W

�
at O(��), and H�

�
and W

�
at O(��) after H�

�
and W

�
have been

determined in any fashion. In other words, there is flexibility to establish the
new Hamiltonian H� (p� , q� ) as one wishes.

Now let us suppose that the zeroth-order Hamiltonian H
�

can be
represented as a function of only the action variables of H

�
, that is, an

integrable form, and the perturbation terms H
�
(n� 1) as functions of both

the action and the angle variables:

H� �
���

��H
�
�H

�
(J) � �

���

��H
�
(J,�) (A.90)

and determine the unknown W
�
so as to make the new Hamiltonian H�

�
as

free from the new angle variables �� as possible, at each order in �� ; H�
�
and

W
�
are determined at O(��) as follows:

H�
�
�H

�
�

dW
�

d�
(A.91)

��H
�
�� �H

�
��

dW
�

d�
(A.92)

where

�H
�
�� lim

��

1

� �
�

�

H
�
(p� (��), q� (��)) d�� (A.93)

�H
�
��H

�
��H

�
� (A.94)

Here, the time � obeying H
�
correlates with the new angle variables ��
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linearly:

d	�
�

d�
� �	�

�
,H

�
��

�H
�
(J� )

�J�
�

�

�
(J� ) (A.95)

	�
�
�


�
(J� )���

�
(�
�
: initial phase factor) (A.96)

Therefore, � f � and � f � representing the average and oscillating parts over
� in f correspond to the free and dependent parts in all the ��

�
, respectively.

The new Hamiltonian at first order H�
�
can be determined to be free from

all the 	�
�
by

H�
�
� �H

�
� (A.97)

W
�
��� �H

�
� d� (A.98)

Similarly, at the second order O(��),

H�
�
�
H�

�
1

2
�W

�
,H�

�
�H

�
�� (A.99)

W
�
��� �2H

�
� �W

�
, H�

�
�H

�
�� d� (A.100)

If the new Hamiltonian H� (J� ) can be shown to be independent of the time
�, we immediately obtain an invariant of motion H�

�
(p� , q� ), since

0�
dH�
d�

� �H� ,H�
�
����H�

�
,H� �� �

dH�
�

dt
(A.101)

As seen in Appendix B, for any function f composed of (p� , q� ), one can easily
find an functional expression f � in terms of the original (p, q) and � by

f (p� , q� ) � T f (p, q) � f � (p, q; �)

Hence, after W has once been established, one can find the functional
expression f � (p, q; �) of any f at each order in � thanks to Eq. (A.75):

f � (p, q; �) � �
���

��f �
�
(p, q) � �

���

��T
�
f (p, q) (A.102)
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For example, up to O(��),

�� : f �
�
(p, q) � f (p, q) (A.103)

�� : f �
�
(p, q) ��L

�
(p, q) f (p, q) ���W

�
(p, q), f (p, q)� (A.104)

�� : f �
�
(p, q) �

1

2
(�L

�
� L �

�
) f (A.105)

�
1

2
(�W

�
, �W

�
, f ��� �W

�
, f �) (A.106)

Note again that one might follow this by putting ‘‘p’’ and ‘‘q’’ into the
‘‘Hamiltonian’’ W as its arguments in the present case, while one might use
‘‘p� ’’ and ‘‘q� ’’ in an another case, for example, Eq. (A.67). A similar situation
was seen in the original derivation for which the arguments of W in the
transformations, for example, Eqs. (A.29) and (A.37), are either (p, q) or
(p� , q� ). The arguments themselves of the functions in the Lie transforms are
really dummy variables and the Lie techniques involve operations on
functions, rather than on variables.

An Illustrative Example. We apply LCPT to the following, simple 2D
Hamiltonian, first demonstrated by Hori [51, 52],

H(p, q) �
1

2
(p�

�
� p�

�
�
�

�
q�
�
�
�

�
q�
�
) � �q

�
q�
�

(A.107)

� (

�
J
�
�


�
J
�
) � � �

2J
�



�
�
��� 2J

�



�

cos	
�
cos�	

�
(A.108)

where the Hamiltonian is integrable at O(��).
According to the recipe of LCPT, Eq. (A.83), the new Hamiltonian

H�
�
(p� , q� ) at O(��) is given by

H�
�
(p� , q� ) �H

�
(p� , q� ) (A.109)

�
1

2
(p� �

�
� p� �

�
�
�

�
q� �
�
�
�

�
q� �
�
) �


�
J�
�
�


�
J�
�

(A.110)
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By using the general solution of the equation of motion obeying a system
of H�

�
(p� , q� );

dp�
�

d�
��

�H�
�

�q�
�

dq�
�

d�
�

�H�
�

�p�
�

(A.111)

q�
�
(�) ��

2J�
�



�

cos	�
�
��

2J�
�



�

cos(

�
�� �

�
) (A.112)

p�
�
(�) ���2


�
J�
�
sin	�

�
���2


�
J�
�
sin(


�
���

�
) (k � 1, 2) (A.113)

Now, we have H
�
as a function of J� and �� ,

H
�
(J� ,�� ) ��

1

4 �
2J�

�



�
�
��� 2J�

�



�

(2 cos	�
�
�cos(	�

�
�2	�

�
)�cos(	�

�
�2	�

�
))

(A.114)

We first decompose this to �H
�
� and �H

�
�, and try to establish the new

Hamiltonian as free from the angle variables �� as possible.

1. Non-(near) Resonant Case: n
�



�
� n

�



�
� 0

In the cases that 

�

is not commensurable with 

�
; in general,

n
�



�
� n

�



�
� 0 (n

�
, n

�
: arbitrary integers), from Eq. (A.114), we have

H�
�
� 0

W
�
��� �H

�
� d��

1

4 �
2J�

�



�
�
��� 2J�

�



�


�
2



�

sin	�
�
�

1



�
�2


�

sin(	�
�
�2	�

�
)�

1



�
�2


�

sin(	�
�
� 2	�

�
)�

(A.115)

or, in terms of (p� , q� ),

W
�
�

(2
�
�
�
�

�
)p�

�
q� �
�
� 2
�

�
q�
�
q�
�
p�
�
� 2p�

�
p� �
�


�
�
(


�
� 2


�
)(


�
� 2


�
)

(A.116)

Hence, by using H
�
(p� , q� ) � �q�

�
q� �
�
,

�W
�
,H

�
��

(2
�
�
�
�

�
)q� �

�
� 2q� �

�
p� �
�
� 4
�

�
q� �
�
q� �
�
� 8q�

�
p�
�
q�
�
p�
�


�
�
(


�
� 2


�
)(


�
� 2


�
)

(A.117)
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and, in the (J� ,�� ) representation, this becomes

�W
�
,H

�
��

4


�
�
(


�
� 2


�
)(


�
� 2


�
) ��

1

8 �



�



�
�
�


 J� �
�
(cos 4	�

�
�4 cos 2	�

�
�3)�J� �

�
(1�cos 2	�

�
)

�



�



�

J�
�
J�
� �1� cos 2	�

�
� cos 2	�

�

�
1

2
(cos 2(	�

�
�	�

�
) � cos 2(	�

�
�	�

�
))�

�J�
�
J�
�
(cos 2(	�

�
�	�

�
) � cos 2(	�

�
�	�

�
))�

Thus, up to O(��), one can have the new Hamiltonian H� , given by

H� � ��(

�
J�
�
�


�
J�
�
) � ��

2


�
�
(


�
� 2


�
)(


�
� 2


�
)


��1�
3

8 �



�



�
�
�

� J� ���



�



�

J�
�
J�
�� (A.118)

The equation of motion obeying the new HamiltonianH� (p� , q� ) repre-
sented up to the second-order O(��),

dp�
�

dt
��

�H�
�q�
�

dq�
�

dt
�

�H�
�p�
�

(A.119)

yields the general solution obeying H� ;

q�
�
(t) ��

2J�
�



�

cos(
�
�
(J� )t� �

�
) (A.120)

p�
�
(t) ���2


�
J�
�
sin(
�

�
(J� )t� �

�
) (A.121)
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where �
�
is the initial phase factor of mode k, and


�
�
(J� ) �


�
� ��

2J�
�



�



�
(


�
� 2


�
)(


�
� 2


�
)

(A.122)


�
�
(J� ) �


�
� ��

2


�
�
(


�
� 2


�
)(


�
� 2


�
)


��2�
3

4 �



�



�
�
�

� J� ��



�



�

J�
�� (A.123)

As described in the preceding paragraphs, one can have new functional
expressions in terms of the original variables (p, q), whose functional
values are equivalent to f (p� , q� ). Here, we shall denote the new
functions as f � (p, q);

f (p� , q� ) � T f (p, q)

� ��f (p, q) � ���W
�
, f ��

��
2
(�W

�
, �W

�
, f ��� �W

�
, f �) ��

� f � (p, q)

For example, up to O(��),

q�
�
(p, q) � q

�
� ��

(
�
�
� 2
�

�
)q�

�
� 2p�

�

�

�
(


�
� 2


�
)(


�
� 2


�
)
�O(��) (A.124)

p�
�
(p, q) � p

�
� ��

2q
�
p
�

(

�
� 2


�
)(


�
� 2


�
)
�O(��) (A.125)

J�
�
(p, q)�

1

2

�

(p�
�
�
�

�
q�
�
)���

(
�
�
�2
�

�
)q

�
q�
�
�2q

�
p�
�
�2p

�
q
�
p
�



�
(


�
�2


�
)(


�
�2


�
)

�O(��)

(A.126)

and, for 
�
�
(p, q) up to O(��),


�
�
(p, q) �


�
� ��

2



�



�
(


�
� 2


�
)(


�
� 2


�
)


�
1

2

�

(p�
�
�
�

�
q�
�
) � ��

2
�
�
q
�
q�
�
� 2q

�
p�
�
� 2p

�
q
�
p
�



�
(


�
� 2


�
)(


�
� 2


�
) �
(A.127)
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Note here that one can straightforwardly obtain all the inverse
representations, for example, q

�
(p� , q� ), as

q
�
(p� , q� ) � q�

�
� ��

(
�
�
� 2
�

�
)q� �

�
� 2p� �

�

�

�
(


�
� 2


�
)(


�
� 2


�
)
�O(��) (A.128)

since

f � (p, q) � T��f �(p� , q� )

� ��f � (p� , q� ) � ���W
�
, f � ��

��
2
(�W

�
, �W

�
, f � ��� �W

�
, f � �) ��

� f (p� , q� )

2. (Near) Resonant Case: n
�



�
� n

�



�
� 0

The expression for W
�
(J� ,�� ) becomes divergent if 


�
� 2


�
vanishes

or becomes as small as O(��), that is,



�
� 2


�
O(��) (A.129)

One should regard the third term in the right-hand side ofH
�
(J� ,�� ) [Eq.

(A.114)] as free from � and include it in H�
�
;

H�
�
��

1

4 �
2J�

�



�
�
��� 2J�

�



�

cos(	�
�
� 2	�

�
)

W
�
��� (H

�
�H�

�
) d�

�
1

4 �
2J�

�



�
�
��� 2J�

�



�
�
2



�

sin	�
�
�

1



�
�2


�

sin(	�
�
�2	�

�
)�

and so forth (see Hori [52] in detail).
Note here that in order to avoid such a small-denominator diver-

gence, one might have to include the corresponding �� into the new
Hamiltonian, or in the case of near-resonance, perform the CPT to
infinite order O(�).

At the end, we derive a versatile recursive series, first derived by
Deprit [46], hold for an arbitrary order O(��) of autonomous Hamil-
tonian systems that are expandable in power series in the perturbation
strength �. The following explanation relies heavily on a tutorial article
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by Cary [45, 53], which modified the original derivation by Deprit
[46]:

First, we premultiplyH� �T��H by T and differentiate with respect
to �:

dT

d�
H� �T

dH�
d�

�
dH

d�
(A.130)

By using Eq. (A.52) to eliminate dT /d� and premultiplying T��, we
obtain

�L
�
H� �

dH�
d�

� T��
dH

d�
(A.131)

By inserting the series expansions and equating like powers of �, one can
have in each order of �� (n� 0):

�
���
�
���

L
���

H�
�
� nH�

�
�

�
�
���

mT��
���

H
�

(A.132)

By writing out the first term in the first sum,

L
�
H�

�
� L

�
H

�
� �W

�
,H

�
��

dW
�

d�
(A.133)

From the last term in the last sum, and for n� 0, one can obtain a
versatile perturbation series

H�
�
�H

�
�

1

n

���
�
���

(L
���

H�
�
�mT��

���
H
�
) �

1

n

dW
�

d�
(A.134)

For nonautonomous systems, an additional term involving the time
derivatives of W (p, q; �) must be included in Eq. (A.66) [45, 46, 53]. In
this Appendix, we have described how Lie transforms provide us with
an important breakthrough in the CPT free from any cumbersome
mixed-variable generating function as one encounters in the tradi-
tional Poincaré—Von Zeipel approach. After the breakthrough in CPT
by the introduction of the Lie transforms, a few modifications have
been established in the late 1970s by Dewar [56] and Dragt and Finn
[47]. Dewar established the general formulation of Lie canonical
perturbation theories for systems in which the transformation is not

  : -    141



expandable in a power series. Dragt and Finn developed a technique,
particularly effective for high-order calculations more than, say, O(��):
It rewrites the evolution operator T as

T (�) � e����e����e����� (A.135)

[which is validated for a wide class of Hamiltonians, e.g., Eqs. (2.28)—
(2.30). The higher the order O(��) at which one may want to perform
the CPT, say n� 5, the smaller the number of terms are needed to
represent the new Hamiltonian H� in Dragt and Finn’s technique [45],
compared with those by Hori and Deprit. Note, however, that high
dimensionality of the systems, to which one may want to apply CPT
based on the Lie transforms, for example, six-atom cluster with 12
internal degrees of freedom, would make the total number of terms to
be elucidated increase very quickly beyond a few orders, and make the
direct applications very difficult, irrespective of kinds of (at least,
existent) techniques in the Lie transforms-based CPTs.

D. A Simple Illustration of Algebraic Quantization

In general, a given Hamiltonian, Eqs. (2.28)—(2.30), can be rewritten at each
order O(��) in terms of (a*, a): for example,

H
�
��

�

a*
�
a
�

H
�
� �

����	

B
��	
(a*
�
a*
�
a*
	

� a
�
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�
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� 3(a
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�
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�
a
�
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H
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����	��

B
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�
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�
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�
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�
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�
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a
�
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�
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�
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a
�
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�
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�
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�
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�
a
�
a
	
a
�
))

where

B
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�
C
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(�2 i)�

�
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B
��	�

�
C
��	�

(�2 i)�

�


�


	


�

(A.136)

To see how the AQ simplifies the cumbersome analytical calculations, let
us apply the AQ to a 2D system far from resonance, of Eq. (A.108),

H(a*, a) � a*
�
a
�
� a*

�
a
�
� �

i

2�2

1



�

�

�


(a*
�
a*�
�

� 2a*
�
a*
�
a
�
� a*

�
a�
�
� a

�
a*�
�

� 2a
�
a*
�
a
�
� a

�
a�
�
) (A.137)
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Thanks to Eqs. (2.46)—(2.47), it is straightforward to establish that

H�
�
(a� *, a� ) �H

�
(a� *, a� ) � a� *

�
a�
�
� a� *

�
a�
�

(A.138)

H�
�
(a� *, a� ) � 0 (A.139)

and

W
�
(a� *, a� ) � �� H

�
(a� *, a� ) d��
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(A.140)

�W
�
,H

�
� can be solved symbolically, thanks to Eq. (2.50) and well-known

general properties of Poisson bracket, Eqs. (A.14)—(A.17).
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)� (A.141)

By using Eqs. (2.46) and (2.47), one can immediately establish the �� -free
terms in �W

�
(a� *, a� ), H

�
(a� *, a� )�, yielding

H�
�
�

2


�
�

�

�
(


�
� 2


�
)(


�
� 2


�
) ��1�
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�
�

� (a� *�a� �)� � a� *
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�
a� *
�
a�
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(A.142)

Here, one can see this being equal to H�
�
, since a� *

�
a�
�
�


�
J�
�
[see Eq.

(A.118)].
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All the functions � appearing through the LCPT—AQ procedure as Eq.
(2.41),

�(a� *, a� ) ��



d


a� *v
a� u
 (A.143)

can be characterized by a set of parameters, �d


, v
, u
� for all the s in

�(a� *, a� ), where coefficient d


for the s-term can be real or imaginary, for

systems involving imaginary frequency mode(s); v
 and u
 denote the vectors
�v


�
, v


�
, . . .� and �u


�
, u


�
, . . .� (v


�
, u


�
: integers� 0). The integrations of � over

�, for example, Eq. (A.140), can symbolically be carried out using the
mathematical properties of exponential functions, for example,

�d


, v
, u
�

��
��

id



(v
� u
) ·�
, v
, u
	

��

(A.144)

The Poisson bracket calculations, for example, ��(a� *, a� ),  (a� *, a� )� where
 (a� *, a� ) is an arbitrary function of a� * and a� as represented by Eq. (A.143),
can also be established symbolically through Eq. (2.50), which replaces
the cumbersome analytical derivations to searching the combinations
��(a� *

�
)� �,�(a�

�
)��� and ��(a�

�
)�
�, �(a� *

�
)�
�� (n, m, n�, m�: arbitrary
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where �



(�





) and  
�

( 
�



) denote arbitrary multiplications over a� *
�
and a�

�
involved in �



(a� *, a� ) and  

�
(a� *, a� ), respectively; �� and �! mean that the

summations are taken over all the terms which have the combinations
��(a� *

�
)��, �(a�

�
)��� and ��(a�

�
)�
�, �(a� *

�
)�
�� [all the other terms sim-

ply vanish because of Eq. (2.50)].
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E. LCPT with One Imaginary Frequency Mode

In general, we may write the Hamiltonian in terms of N-dimensional actions
J and angles 	 of H

�
:

H(J,�) �H
�
(J) ��

�

��H
�
(J,�)

�H
�
(J)

� �

�
m

H1m(J)eim ·� � ��

�
m

H2m(J)eim ·� ��

for example,

H1m(J)eim ·��
�
�
���

H1m
�
(J
�
)eim�	� (A.145)

where m
�
and H

��
�

(J
�
) are integers and Fourier coefficients depending on

the action of mode k, J
�
. The frequencies of the unperturbedH

�
(J) are given

by

�(J) �
�H

�
(J)

�J
(A.146)

Here, we assume that 

�
may vary depending on the point (p, q) in the phase

space as a function of the action J
�
, for example, N-dimensional Morse

oscillators,

H
�
(p, q) �

�
�
���
�
p�
�

2m
�

�D
�
(e�2a

�
(q
�
�q��

�
) � 2e�a

�
(q
�
�q��

�
))� (A.147)
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D
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a
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(A.148)

where
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�
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m
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�1�

a
�
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�
D
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According to the recipe of LCPT, we have at zeroth order,

H�
�
(J� ) �H

�
(J� ) (A.150)

and at first order,

H�
�
�H

�
(J� ,�� ) �

dW
�
(J� ,�� )
d�

(A.151)

Extracting the �� -free part from H
�
by averaging it over � yields

H�
�
(J� ) � �H

�
(J� ,�� )� (A.152)

and

W
�
���

�
d���H

�
(J� ,�� (��))� (A.153)

Thus, one can solve W
�
by integrating the Fourier series for the oscillating

part of H
�
,

W
�
(J� ,�� ) � i �

m�0

H1m(J� )
m ·�(J� )

eim ·�� (A.154)

Suppose that in the vicinity of a first-rank saddle, the system is composed
of one unstable mode F associated with an imaginary frequency 


�
(J� )(�F)

and the other stable modes B with real frequencies �

(J� )(�R). Then, one

can see that all the terms involving 

�
(J� ) in Eq. (A.154) are prevented from

diverging regardless of where the system dwells in the phase space, even
though all the other terms excluding that mode may be ill-behaved. This is
because, so long as the summation includes 


�
(J� ), any arbitrary combina-

tion of a single imaginary, and the other real frequencies cannot be
arbitrarily close to zero, that is, �m ·�(J� )�� �


�
(J� )��O(��). However, for all

the other terms involved in the Eq. (A.154), that is, those excluding 

�
(J� ),

one may find any J� and m that assures that́ m ·�(J� ) is arbitrarily close to
zero, threatening to cause a divergence of the parts of the summation.

How does the new Hamiltonian H� (J� ) become ruined or not, in the event
of such a resonance? Suppose, for example, that H�

�
can be obtained by

H�
�
�
H�

�
1

2
�W

�
,H

�
�H�

�
�� (A.155)
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with

��W
�
, H

�
�H�

�
�����W

�
, H

�
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� �
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�� (A.156)

Here, �W
�
, H�

�
� has no average part free from � because W

�
is oscillatory

and H�
�
is averaged. Likewise, the second summation has no average part to

emerge from a condition that m�� 0. The average part of �W
�
,H

�
� consists

of all the terms such that
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�
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�
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�
)


�
(J� ) � 0 (A.157)

Then, Eq. (A.156) becomes
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where

Gm
�
,m �

�
�H1m

�
H1m �

�
and Gm,m���

�

Gm
�
m �
�

(A.159)
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and the symbol �� denotes that the summation is taken under the condition
of Eq. (A.157).

Note that all the terms in ��W
�
,H

�
�� involving the contribution of mode

F, that is, m
�
��m�

�
� 0, provide us with the nondivergent part of H�

�
(J� )

(irrespective of where the system dwells in the phase space) as a function of
J�
�
and J�


because m ·�(J� ) involving one imaginary frequency 


�
(J� ) always

removes the small-denominator problem. The other terms in ��W
�
,H

�
��

excluding the F’s, for which we have m
�
�m�

�
� 0 and G

������
(J�
�
) � 1 in

Eq. (A.158), that is, functions of J�

, may bring about divergence in such

phase space regions that m ·�

(J� ) becomes close to zero. This might require

that we include the corresponding angle variables in the new Hamiltonian
to avoid the divergence [48—50, 55]. Thus, one can deduce a generic feature
inherent in the region of (first-rank) saddles, irrespective of the systems, that
a negatively curved, reactive mode F tends more to preserve its invariant of
action, than all the other stable, nonreactive modes B.

In turn, How does such a resonance occurring in the vicinity of first-rank
saddles affect the associated local frequencies 
�

�
(J� )? One might anticipate

naively that, if the system is not in the quasiregular regime where all or
almost of all the actions are ‘‘good’’ approximate invariants, the invariants
of all 
�

�
(J� ) are spoiled, including that of the reactive mode F, since 
�

�
(J� )

depends not only on the invariant J�
�
but also on the other J�


. Now, let us

look into 
�
�
(J� ) at second order:


�
�
(J� ) �

�H�
�J�

�

�

�
(J� ) � �

��H
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�
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�

� �� �
��H

�
�

�J�
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�
1

2

���W
�
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�
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�J�
�

��O(��)

(A.160)

From Eq. (A.158),

���W
�
,H

�
��

�J�
�

�
�
�J�

�
�

h(J�
�
, J�

)

(m
�


�

(J� ) �m

·�


(J� ))�

�
h�(J�


)

(m

·�


(J� ))��

(A.161)

where exponent n is 1 or 2, and h and h� are, respectively, functions of J�
�

and J�

, and of J�


only. If one takes the partial derivative of ��W

�
,H

�
�� with

respect to J�
�
, one can see that 
�

�
(J� ) is not affected by the second term

of the right-hand side, where any J�

and́ m


can be found such that

m

·�


(J� ) is arbitrarily close to zero. Even if the implicit contributions from

some fluctuating J�


exist in the 
�
�

(J� ) at second order, they will be
suppressed by the nonvanishing denominators that are always larger than
�

�

(J� )�. On the contrary, if one takes the partial derivatives with respect to
J�

, they are affected by both the first and second terms. Especially the
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second term may enhance the contributions from the fluctuating J�

to the

��


(J� ) through the small denominators occurring in some phase-space
regions. Thus, one can deduce a generic consequence that the local fre-
quency 
�

�
(J� ) is less influenced by the fluctuations of J�


and more persistent

as an approximate invariant than ��


(J� ). [In fact, as shown in our recent
numerical analysis using a bundle of well—saddle—well trajectories [44],
even at a moderately high energy where almost all J� do not preserve their
invariance— the exception being that J�

�
�
� ��	

�
(J� ) tends to exhibit near-

constancy with a much smaller fluctuation than those of �� ��	


(J� )].
It can easily be shown that the equation of motion of mode F obeying a

Hamiltonian H� (J�
�
, ��

) (��


� (J�


,��


)) is given by

q��
�

(p, q) �

��
�


�
�

q��
�

(p, q) �
� �
�
q�
�

(p, q) � 0 (A.162)

p�
�

(p, q) �


�


�
�

q� �
�

(p, q) (A.163)

where


�
�
�
�

�
(J�
�
, ��

) �

�H� (J�
�
, ��

)

�J�
�

(A.164)

Here, x" and ẍ represent the first and second derivatives of x with respect to
time t. 
�

�
(J�
�
, ��

) depends on time only through nonreactive modes ��


because J�

�
is free from t ; the ��


contributions to 
�

�
usually arise from

higher orders in �; for example, it is second order in the vicinity of first-rank
saddles, yielding [the second term of the left hand side of Eq. (A.162)]
�O(��)q��

�
, and, furthermore, these are suppressed due to nondivergent

denominators involving one imaginary frequency 

�
.

Eq. (A.162) corresponds to a one-dimensional pendulum whose length
will slowly change, being a well-used example to present the robust
persistence of invariance of action under a small perturbation, referred to as
‘‘adiabatic invariance’’ (for example, see [53, 81]). By introducing the time
dependencies of �, �, and 
�

�
into the general solution of the ‘‘auxiliary

equation’’ of Eq. (A.162) imposing 
��
�
� 0, that is,

q 
�
(t) � �(t)l i
� �(t)t ��(t)e�i
�

�
(t)t (A.165)

and setting the supplementary condition

�" ei
� ��� �� e�i
�
�
t� i
��

�
t (�ei
� �t��e� i
�

�
t) � 0 (A.166)

one can obtain [82] the solution of Eq. (A.162) with a slowly varying
frequency by using the method of variation of constants:

q�
�
(t) � �(0)e i#�
� �(t�)dt� ��(0)e�i#�
�

�
(t�)dt� (A.167)
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and

p�
�
(t) � i�(0)


�
ei#�
� �(t�)dt� � i�(0)


�
e�i#�
�

�
(t�)dt� (A.168)

(One can easily verify that Eqs. (A.167) and (A.168) satisfy Eq. (A.6)). To
pass through the dividing surface from the one side to the other, the crossing
trajectories typically require, at most, only a half period of the reactive
hyperbolic orbit ��/�
�

�
�. Furthermore, in the regions of first-rank saddles,

such passage time intervals are expected to be much shorter than a typical
time of the systems to find the variation or modulation of the frequency 
�

�
with respect to the curvature, that is, �/�
�

�
�(�O(��)) � �
�

�
/
��

�
�(�O(���)).

Thus, if J�
�
is conserved (i.e., the Hamiltonian is free from 	�

�
), independent

of the constancy or nonconstancy of 
�
�

(p, q), we can expect any noncon-
stancy of 
�

�
to leave the separability of q�

�
as unaffected as J�

�
in the region

of first-rank saddles. That is,

q�
�
(t) � �(0)e �
�

�
�t��(0)e��
�

�
�t (A.169)

and

p�
�
(t) � �(0)�


�
�e�
� � �t��(0)�


�
�e��
�

�
�t (A.170)

Note here that, even though the fluctuation of 
�
�
(t) in a short passage time

would be large enough to spoil the separability of q�
�
of Eqs. (A.169) and

(A.170), one may still predict the final state of reactions a priori as far as the
sign of i #�
�

�
(t�)dt� will not change during the passage through the saddle.

That is, for example, if the system leaving S(q
�
� 0) at time t� 0 have

�(0)� 0, the final state can be predicted at that time to be a stable state
directed by q�

�
� 0.
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